Design And Manufacture of A Delta Type Parallel Robot from the Study of Materials

Author(s):  
Aruquipa A. Grover ◽  
Rojas S. Gabriel
Author(s):  
Martín Eduardo Rodríguez-Franco ◽  
Ricardo Jara-Ruiz ◽  
Yadira Fabiola López-Álvarez ◽  
Juan Carlos García-Rodríguez

The development and implementation process of a computer interface for the kinematic analysis of a parallel robot, in delta configuration, and its application to a previously formed prototype are exposed. Being identified the associated equations, and deduced the respective geometric parameters. On the other hand, the synthesis of the direct and inverse kinematic models, with the Matlab software, guarantees the calculation of a specific Cartesian position, in the end effector of the robot used, once certain joint values have been assigned to it, or vice versa. Finally, a user-friendly graphical interface is created, whose functions are: data entry, resolution of the models described, issuance of the corresponding results, representation of the robot used and its physical manipulation. The results obtained in the real location of the end effector with respect to the values deduced by the interface, are competitive for both models analyzed, even though the prototype used operates by means of servomotors. An average position error of 0.083 cm per axis and overall of 0.006 cm is observed during the tests developed.


Robotica ◽  
2009 ◽  
Vol 27 (4) ◽  
pp. 579-587 ◽  
Author(s):  
Jangho Hong ◽  
Motoji Yamamoto

SUMMARYThe paper presents a method of reaction force and moment calculation for a 3-RSS pure translational parallel link robot (Delta-type parallel robot), in which the inverse and forward kinematics of the parallel link robot are directly analyzed according to kinematic structure of the parallel robot. For dynamic analysis, the parallel robot is imaginarily parted into three serial ones, and their actual joint torques are determined by the virtual work principle. To obtain the reaction force and moment of the parallel robot acting on the base, which is the composition of the reaction forces and moments of the three serial robots, the Newton–Euler Method is adopted. To show the validity of the presented method, the simulation analysis and experimental results are given, the experimental results tally with the calculation value.


2015 ◽  
Vol 762 ◽  
pp. 101-106 ◽  
Author(s):  
Nadia Ramona Cretescu ◽  
Mircea Neagoe

This paper presents a comparative kinematic and dynamic analysis of a Delta parallel robot based on numerical simulations of the rigid vs. flexible links robot models. The flexible links numerical models are derived using AutoFlex module of Adams software. Finally, the conclusions regarding the obtained results useful in manipulator constructive design are presented.


Author(s):  
Shi Baek Park ◽  
Han Sung Kim ◽  
Changyong Song ◽  
Kyunghwan Kim

2020 ◽  
Vol 33 (01) ◽  
pp. 137-147
Author(s):  
A. L. Balmaceda-Santamaría ◽  
A. E. Chávez-Toruño

In this paper an asymmetric reconfigurable parallel manipulator is presented. Asymmetric configurations are obtained by modifying the angle between each of the kinematic chains. Thanks to the reconfiguration proposal significant improvement of the manipulator performance can be obtained with respect to a Delta-type parallel robot. The computation of the best condition number is obtained, the results show that by using the redundancy, all the performance indices that depend on the Jacobian matrix can be improved as well.


Sign in / Sign up

Export Citation Format

Share Document