A hierarchical feature decomposition clustering algorithm for unsupervised classification of document image types

Author(s):  
Dean Curtis ◽  
Vitaliy Kubushyn ◽  
E.A. Yfantis ◽  
Michael Rogers
Author(s):  
J. K. Mandal ◽  
Somnath Mukhopadhyay

This chapter deals with a novel approach which aims at detection and filtering of impulses in digital images through unsupervised classification of pixels. This approach coagulates directional weighted median filtering with unsupervised pixel classification based adaptive window selection toward detection and filtering of impulses in digital images. K-means based clustering algorithm has been utilized to detect the noisy pixels based adaptive window selection to restore the impulses. Adaptive median filtering approach has been proposed to obtain best possible restoration results. Results demonstrating the effectiveness of the proposed technique are provided for numeric intensity values described in terms of feature vectors. Various benchmark digital images are used to show the restoration results in terms of PSNR (dB) and visual effects which conform better restoration of images through proposed technique.


Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 328 ◽  
Author(s):  
Eleftheria Mylona ◽  
Vassiliki Daskalopoulou ◽  
Olga Sykioti ◽  
Konstantinos Koutroumbas ◽  
Athanasios Rontogiannis

This paper deals with (both supervised and unsupervised) classification of multispectral Sentinel-2 images, utilizing the abundance representation of the pixels of interest. The latter pixel representation uncovers the hidden structured regions that are not often available in the reference maps. Additionally, it encourages class distinctions and bolsters accuracy. The adopted methodology, which has been successfully applied to hyperpsectral data, involves two main stages: (I) the determination of the pixel’s abundance representation; and (II) the employment of a classification algorithm applied to the abundance representations. More specifically, stage (I) incorporates two key processes, namely (a) endmember extraction, utilizing spectrally homogeneous regions of interest (ROIs); and (b) spectral unmixing, which hinges upon the endmember selection. The adopted spectral unmixing process assumes the linear mixing model (LMM), where each pixel is expressed as a linear combination of the endmembers. The pixel’s abundance vector is estimated via a variational Bayes algorithm that is based on a suitably defined hierarchical Bayesian model. The resulting abundance vectors are then fed to stage (II), where two off-the-shelf supervised classification approaches (namely nearest neighbor (NN) classification and support vector machines (SVM)), as well as an unsupervised classification process (namely the online adaptive possibilistic c-means (OAPCM) clustering algorithm), are adopted. Experiments are performed on a Sentinel-2 image acquired for a specific region of the Northern Pindos National Park in north-western Greece containing water, vegetation and bare soil areas. The experimental results demonstrate that the ad-hoc classification approaches utilizing abundance representations of the pixels outperform those utilizing the spectral signatures of the pixels in terms of accuracy.


2020 ◽  
Vol 4 (2) ◽  
pp. 780-787
Author(s):  
Ibrahim Hassan Hayatu ◽  
Abdullahi Mohammed ◽  
Barroon Ahmad Isma’eel ◽  
Sahabi Yusuf Ali

Soil fertility determines a plant's development process that guarantees food sufficiency and the security of lives and properties through bumper harvests. The fertility of soil varies according to regions, thereby determining the type of crops to be planted. However, there is no repository or any source of information about the fertility of the soil in any region in Nigeria especially the Northwest of the country. The only available information is soil samples with their attributes which gives little or no information to the average farmer. This has affected crop yield in all the regions, more particularly the Northwest region, thus resulting in lower food production.  Therefore, this study is aimed at classifying soil data based on their fertility in the Northwest region of Nigeria using R programming. Data were obtained from the department of soil science from Ahmadu Bello University, Zaria. The data contain 400 soil samples containing 13 attributes. The relationship between soil attributes was observed based on the data. K-means clustering algorithm was employed in analyzing soil fertility clusters. Four clusters were identified with cluster 1 having the highest fertility, followed by 2 and the fertility decreases with an increasing number of clusters. The identification of the most fertile clusters will guide farmers on where best to concentrate on when planting their crops in order to improve productivity and crop yield.


Author(s):  
Ning Wang ◽  
Xianhan Zeng ◽  
Renjie Xie ◽  
Zefei Gao ◽  
Yi Zheng ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 355
Author(s):  
Weixian Tan ◽  
Borong Sun ◽  
Chenyu Xiao ◽  
Pingping Huang ◽  
Wei Xu ◽  
...  

Classification based on polarimetric synthetic aperture radar (PolSAR) images is an emerging technology, and recent years have seen the introduction of various classification methods that have been proven to be effective to identify typical features of many terrain types. Among the many regions of the study, the Hunshandake Sandy Land in Inner Mongolia, China stands out for its vast area of sandy land, variety of ground objects, and intricate structure, with more irregular characteristics than conventional land cover. Accounting for the particular surface features of the Hunshandake Sandy Land, an unsupervised classification method based on new decomposition and large-scale spectral clustering with superpixels (ND-LSC) is proposed in this study. Firstly, the polarization scattering parameters are extracted through a new decomposition, rather than other decomposition approaches, which gives rise to more accurate feature vector estimate. Secondly, a large-scale spectral clustering is applied as appropriate to meet the massive land and complex terrain. More specifically, this involves a beginning sub-step of superpixels generation via the Adaptive Simple Linear Iterative Clustering (ASLIC) algorithm when the feature vector combined with the spatial coordinate information are employed as input, and subsequently a sub-step of representative points selection as well as bipartite graph formation, followed by the spectral clustering algorithm to complete the classification task. Finally, testing and analysis are conducted on the RADARSAT-2 fully PolSAR dataset acquired over the Hunshandake Sandy Land in 2016. Both qualitative and quantitative experiments compared with several classification methods are conducted to show that proposed method can significantly improve performance on classification.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 134
Author(s):  
Loai Abdallah ◽  
Murad Badarna ◽  
Waleed Khalifa ◽  
Malik Yousef

In the computational biology community there are many biological cases that are considered as multi-one-class classification problems. Examples include the classification of multiple tumor types, protein fold recognition and the molecular classification of multiple cancer types. In all of these cases the real world appropriately characterized negative cases or outliers are impractical to achieve and the positive cases might consist of different clusters, which in turn might lead to accuracy degradation. In this paper we present a novel algorithm named MultiKOC multi-one-class classifiers based K-means to deal with this problem. The main idea is to execute a clustering algorithm over the positive samples to capture the hidden subdata of the given positive data, and then building up a one-class classifier for every cluster member’s examples separately: in other word, train the OC classifier on each piece of subdata. For a given new sample, the generated classifiers are applied. If it is rejected by all of those classifiers, the given sample is considered as a negative sample, otherwise it is a positive sample. The results of MultiKOC are compared with the traditional one-class, multi-one-class, ensemble one-classes and two-class methods, yielding a significant improvement over the one-class and like the two-class performance.


Sign in / Sign up

Export Citation Format

Share Document