Realization of band-pass filter based on LH transmission line with microstrip structure

Author(s):  
Chang Chen ◽  
Qi Zhu ◽  
Li Zhu ◽  
Shanjia Xu
Author(s):  
Sanae Azizi ◽  
Mustapha El Halaoui ◽  
Abdelmoumen Kaabal ◽  
Saida Ahyoud ◽  
Adel Asselman

<p>In this paper, the bandwidth enhancement of bandpass filter (BPF) is proposed by utilizing defected microstrip structure (DMS). The initial micro strip BPF which is designed to have the bandwidth 1GHz with the center frequency of 3.5GHz is deployed on FR4 Epoxy dielectric substrate with overall size and thickness of 14mm x 24mm and 1.6mm, respectively. The proposed filter consists of two parallel coupled lines centred by ring-shaped, to enhance the bandwidth response, an attempt is carried out by applying DMS on the ligne center with a ring-shaped of initial filter. Here, the proposed DMS is constructed of the arrowhead dumbbell. Some parametrical studies to the DMS such as changing to obtain the optimum geometry of DMS with the desired bandwidth response. From the characterization result, it shows that the utilization of DMS on to the microstrip ligne of filter has widened 3dB bandwidth response up to 1.8GHz ranges from 2.55GHz to 4.35GHz yielding an enhanced wideband response for various wideband wireless applications.</p>


Frequenz ◽  
2017 ◽  
Vol 71 (7-8) ◽  
Author(s):  
Lei Chen ◽  
Xiao Yan Li ◽  
Feng Wei

AbstractA compact quad-band band-pass filter (BPF) based on stub loaded resonators (SLRs) with defected microstrip structure (DMS) is analyzed and designed in this paper. The proposed resonator is created by embedding DMS into the SLR and can achieve four narrow passbands. By employing the pseudointerdigital coupling structure between the two resonators, transmission zeros among each passband are generated to improve the passband selectivity and a high isolation is achieved. In order to validate its practicability, a prototype of a quad-band BPF centred at 1.57, 2.5, 4.3 and 5.2 GHz is designed and fabricated. The proposed filter is more compact due to the slow-wave characteristic of DMS. The simulated and measured results are in good agreement with each other. In addition, the DMS idea can be extended to the design of other microstrip passive devices.


2016 ◽  
Vol 15 (5) ◽  
pp. 6768-6775
Author(s):  
Ghasan Ali Hussain

Filters occupy important acts in several Radio Frequency microwave applications. Several applications such as wireless communications still challenge RF/microwave filters with strict requirements such as smaller size, higher performance, lighter weight, and lower cost. Microstrip Filters for RF/Microwave Applications offers a unique and comprehensive treatment of RF/microwave filters based on the microstrip structure. One of the most common methods in designing microwave filters is using of parallel-coupled microstrip. In this paper  simulate and fabricate by using Ansoft Designer a two resonator microstrip band-pass filter suitable for Wi-Fi applications.  The results of simulation were quite good.


Sign in / Sign up

Export Citation Format

Share Document