High-Performance and Low-Cost L-Band T/R Module for Space Application

Author(s):  
Bingfei Dou ◽  
Jijin Yan ◽  
Yiwei Wu ◽  
Ligang Wang ◽  
Chunming Lv ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yubing Han ◽  
Luoqing Zhong

The Five-Hundred-Meter Aperture Spherical Telescope (FAST) is a Chinese megascience project that aims to build the largest single dish radio telescope in the world. Given its multiple simultaneous beam formation, phased array feed (PAF) is widely used to extend the field of view and enhance the survey speed of the radio telescope. In this study, a broadband and low cost PAF element using cross-dipole antenna at L-band is designed based on the requirement of the FAST. The antenna is fed by two microstrip baluns which have high performance and is easy to manufacture compared to the traditional coaxial balun. A simple system model is also introduced to evaluate the PAF performance. The measured results of the fabricated element and the simulations of the system performance validate the effectiveness of element design.


2019 ◽  
Vol 56 (3) ◽  
pp. 50-61
Author(s):  
M. Bleiders ◽  
A. Berzins ◽  
N. Jekabsons ◽  
K. Skirmante ◽  
Vl. Bezrukovs

Abstract Irbene RT-32 radio telescope is one of the main instruments operated by Ventspils International Radio Astronomy Center (VIRAC), which is used for participation in VLBI and single-dish mode observations, including European VLBI Network (EVN) and other astronomy projects such as recently started research on small bodies of solar system, which involves weak spectral line detection at L-band. Since start of the operation as a radio telescope, single C-X band receiver has been available at RT-32, but regular demand for L-band frequencies has been received due to its importance in spectral line science. In case of RT-32 geometry, optimum dimensions of L-band feed antenna system are inconveniently large and its installation without significant feed cone rebuilding is complicated. While work is currently ongoing to redesign the feed cone for multiple receiver support and to develop high performance L-band feed system, temporal, compact and low-cost receiver has been built and installed laterally to secondary focus, which in sense of performance and functionality has been proven to be appropriate for most of the current needs. Receiver is based on small parabolic reflector allowing one to use a compact dual circular polarized horn antenna, which together with a Cassegrain antenna forms a three-mirror system. Front-end is uncooled that allows reducing operational and maintenance costs, while still providing acceptable noise performance. Practical tests show average overall sensitivity of 750 Jy at 1650 MHz in terms of system effective flux density (SEFD). The paper describes the development of the receiver and presents the main results of performance characterization obtained at Irbene RT-32.


2020 ◽  
Vol 56 (5) ◽  
pp. 3588-3598
Author(s):  
Zhuojun Chen ◽  
Ding Ding ◽  
Yemin Dong ◽  
Yi Shan ◽  
Yun Zeng ◽  
...  

Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


Sign in / Sign up

Export Citation Format

Share Document