Development an instability model for bord-and-pillar goaf using elastic foundation plate theory

Author(s):  
Cong-liang Liu ◽  
Zhi-xiang Tan ◽  
Ka-zhong Deng ◽  
Pei-xian Li
2013 ◽  
Vol 13 (01) ◽  
pp. 1250073 ◽  
Author(s):  
SEYYED M. HASHEMINEJAD ◽  
M. NEZAMI ◽  
M. E. ARYAEE PANAH

This paper investigates the active control of the supersonic flutter motion of an elastically supported rectangular sandwich plate, which has a tunable electrorheological (ER) fluid core and rests on a Winkler–Pasternak elastic foundation, subjected to an arbitrary flow of various yaw angles. The classical thin plate theory is adopted. The ER fluid core is modeled as a first order Kelvin–Voigt material, and the quasi-steady first order supersonic piston theory is employed for the aerodynamic loading. The generalized Fourier expansions in conjunction with Galerkin method are employed to formulate the governing equations in the state-space domain. The critical dynamic pressures at which unstable panel oscillations occur are obtained for a square sandwich plate, with or without an interacting soft/stiff elastic foundation, for selected applied electric field strengths and flow yaw angles. The Runge–Kutta method is then used to calculate the open-loop aeroelastic response of the system in various basic loading configurations. Subsequently, a sliding mode control (SMC) synthesis is set up to actively suppress the closed loop system response in yawed supersonic flight conditions with imposed excitations. The results demonstrate the performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system.


Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
Nguyen Thoi Trung ◽  
Nguyen Van Tue

In this paper, an analytical approach for nonlinear buckling and post-buckling behavior of stiffened porous functionally graded plate rested on Pasternak's elastic foundation under mechanical load in thermal environment is presented. The orthogonal and/or oblique stiffeners are attached to the surface of plate and are included in the calculation by improving the Lekhnitskii's smeared stiffener technique in the framework of higher-order shear deformation plate theory. The complex equilibrium and stability equations are established based on the Reddy's higher-order shear deformation plate theory and taken into account the geometrical nonlinearity of von Kármán. The solution forms of displacements satisfying the different boundary conditions are chosen, the stress function method and the Galerkin procedure are used to solve the problem. The good agreements of the present analytical solution are validated by making the comparisons of the present results with other results. In addition, the effects of porosity distribution, stiffener, volume fraction index, thermal environment, elastic foundation… on the critical buckling load and post-buckling response of porous functionally graded material plates are numerically investigated.


2019 ◽  
Vol 19 (06) ◽  
pp. 1950065
Author(s):  
Zhengtian Wu ◽  
Yang Zhang ◽  
Weicheng Ma

Given the unique and extremely valuable properties, research has significantly focussed on graphene sheets (GSs). To premeditate the small-scale effect, the present work applies the nonlocal theory to study the buckling behavior of a double-layered GS (DLGS) embedded in an elastic foundation. To derive the equation, classical plate theory is adopted. For the elastic foundation, Pasternak-type model is used. In terms of buckling response, a meshless method is utilized to compute simulation results. Accordingly, we examine the effects of aspect ratio, geometry, boundary conditions and nonlocal parameters on the buckling responses of DLGSs.


2019 ◽  
Vol 58 ◽  
pp. 151-164 ◽  
Author(s):  
Fatima Boukhatem ◽  
Aicha Bessaim ◽  
Abdelhakim Kaci ◽  
Abderrahmane Mouffoki ◽  
Mohammed Sid Ahmed Houari ◽  
...  

In this article, the analyses of free vibration of nanoplates, such as single-layered graphene sheets (SLGS), lying on an elastic medium is evaluated and analyzed via a novel refined plate theory mathematical model including small-scale effects. The noteworthy feature of theory is that the displacement field is modelled with only four unknowns, which is even less than the other shear deformation theories. The present one has a new displacement field which introduces undetermined integral variables, the shear stress free condition on the top and bottom surfaces of the plate is respected and consequently, it is unnecessary to use shear correction factors. The theory involves four unknown variables, as against five in case of other higher order theories and first-order shear deformation theory. By using Hamilton’s principle, the nonlocal governing equations are obtained and they are solved via Navier solution method. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, nonlocal parameter, and elastic foundation parameters are all examined. From this work, it can be observed that the small-scale effects and elastic foundation parameters are significant for the natural frequency.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850049 ◽  
Author(s):  
Smita Parida ◽  
Sukesh Chandra Mohanty

This paper deals with the free vibration and buckling analysis of functionally graded material (FGM) plates, resting on the Winkler–Pasternak elastic foundation. The higher order shear deformation plate theory (HSPT) is adopted for the realistic variation of transverse displacement through the thickness, using the power law distribution to describe the variation of the material properties. Both the effects of shear deformation and rotary inertia are considered. In the present model, the plate is discretised into [Formula: see text] eight noded serendipity quadratic elements with seven nodal degrees of freedom (DOFs). The validation study is carried out by comparing the calculated values with those given in the literature. The effects of various parameters like the Winkler and Pasternak modulus coefficients, volume fraction index, aspect ratio, thickness ratio and different boundary conditions on the behaviour of the FGM plates are studied.


2018 ◽  
Vol 41 (8) ◽  
pp. 1042-1062
Author(s):  
Attia Bachiri ◽  
Mohamed Bourada ◽  
Abdelkader Mahmoudi ◽  
Samir Benyoucef ◽  
Abdelouahed Tounsi

Sign in / Sign up

Export Citation Format

Share Document