Robotic Global Path-Planning Based Modified Genetic Algorithm and A* Algorithm

Author(s):  
Cen Zeng ◽  
Qiang Zhang ◽  
Xiaopeng Wei
2021 ◽  
Vol 01 ◽  
Author(s):  
Ying Li ◽  
Chubing Guo ◽  
Jianshe Wu ◽  
Xin Zhang ◽  
Jian Gao ◽  
...  

Background: Unmanned systems have been widely used in multiple fields. Many algorithms have been proposed to solve path planning problems. Each algorithm has its advantages and defects and cannot adapt to all kinds of requirements. An appropriate path planning method is needed for various applications. Objective: To select an appropriate algorithm fastly in a given application. This could be helpful for improving the efficiency of path planning for Unmanned systems. Methods: This paper proposes to represent and quantify the features of algorithms based on the physical indicators of results. At the same time, an algorithmic collaborative scheme is developed to search the appropriate algorithm according to the requirement of the application. As an illustration of the scheme, four algorithms, including the A-star (A*) algorithm, reinforcement learning, genetic algorithm, and ant colony optimization algorithm, are implemented in the representation of their features. Results: In different simulations, the algorithmic collaborative scheme can select an appropriate algorithm in a given application based on the representation of algorithms. And the algorithm could plan a feasible and effective path. Conclusion: An algorithmic collaborative scheme is proposed, which is based on the representation of algorithms and requirement of the application. The simulation results prove the feasibility of the scheme and the representation of algorithms.


2011 ◽  
Vol 328-330 ◽  
pp. 1881-1886
Author(s):  
Cen Zeng ◽  
Qiang Zhang ◽  
Xiao Peng Wei

Genetic algorithm (GA), a kind of global and probabilistic optimization algorithms with high performance, have been paid broad attentions by researchers world wide and plentiful achievements have been made.This paper presents a algorithm to develop the path planning into a given search space using GA in the order of full-area coverage and the obstacle avoiding automatically. Specific genetic operators (such as selection, crossover, mutation) are introduced, and especially the handling of exceptional situations is described in detail. After that, an active genetic algorithm is introduced which allows to overcome the drawbacks of the earlier version of Full-area coverage path planning algorithms.The comparison between some of the well-known algorithms and genetic algorithm is demonstrated in this paper. our path-planning genetic algorithm yields the best performance on the flexibility and the coverage. This meets the needs of polygon obstacles. For full-area coverage path-planning, a genotype that is able to address the more complicated search spaces.


2020 ◽  
Vol 73 (6) ◽  
pp. 1247-1262
Author(s):  
Yang Long ◽  
Zheming Zuo ◽  
Yixin Su ◽  
Jie Li ◽  
Huajun Zhang

The bacterial foraging optimisation (BFO) algorithm is a commonly adopted bio-inspired optimisation algorithm. However, BFO is not a proper choice in coping with continuous global path planning in the context of unmanned surface vehicles (USVs). In this paper, a grid partition-based BFO algorithm, named AS-BFO, is proposed to address this issue in which the enhancement is contributed by the involvement of the A* algorithm. The chemotaxis operation is redesigned in AS-BFO. Through repeated simulations, the relative optimal parameter combination of the proposed algorithm is obtained and the most influential parameters are identified by sensitivity analysis. The performance of AS-BFO is evaluated via five size grid maps and the results show that AS-BFO has advantages in USV global path planning.


Sign in / Sign up

Export Citation Format

Share Document