Research on a General Fast Analysis Algorithm Model for PD Acoustic Detection System: Pattern Identification with Phase Compensation

Author(s):  
Wen-Rong Si ◽  
Xing-De Huang ◽  
Zi Xin ◽  
Bing-Bing Lu ◽  
Hai-Long Bao ◽  
...  
2013 ◽  
Vol 35 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Donhyug Kang ◽  
Seonho Lim ◽  
Hyungbeen Lee ◽  
Jaewon Doh ◽  
Youn-Ho Lee ◽  
...  

Author(s):  
Gerald B. Anderson

Trackside Acoustic Detection System (TADS®) development spearheaded implementation of an acoustic freight car roller bearing detector whose purpose is to prevent in-service bearing failures (burned off journals and hot bearing detector train stops). The means of accomplishing this goal is by providing the user with a warning of internal bearing defects or degradation with component involvement and severity information. The Transportation Technology Center, Inc. (TTCI) began the TADS® development process in 1994 with basic research into bearing defect acoustic emissions. Subsequently, TTCI conducted prototype testing on a North American railroad, constructed and installed of several international beta test systems, and finally has sold production systems in North America and internationally. There are currently about 40 TADS® sites in operation world-wide with 2.0 or more systems scheduled for installation in 2007. The original mission for TADS® in North America was an early warning of bearing degradation to allow for scheduled maintenance, but after initial evaluation, this mission enlarged to include notification of potentially high risk bearings. The high risk bearing is defined as one with fairly large areas of internal damage and at an increased risk of overheating or failing in service. The high risk bearing has a different acoustic signature, dissimilar to that of smaller defects. This paper will outline the change in mission for this detector and describe the development of an improved capability for detecting these high risk bearings.


2019 ◽  
Vol 146 (4) ◽  
pp. 3079-3079
Author(s):  
Steven S. Bishop ◽  
Timothy R. Moore ◽  
Peter Gugino ◽  
Brett Smith ◽  
Kathryn P. Kirkwood ◽  
...  

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 62
Author(s):  
Jakub Svatos ◽  
Jan Holub ◽  
Jan Belak

<p class="Abstract">Currently, acoustic detection techniques of gunshots (gunshot detection and its classification) are increasingly being used not only for military applications but also for civilian purposes. Detection, localisation, and classification of a dangerous event such as gunshots employing acoustic detection is a perspective alternative to visual detection, which is commonly used. In some situations, to detect and localise the source of a gunshot, an automatic acoustic detection system, which can classify the caliber, may be preferable. This paper presents a system for acoustic detection, which can detect, localise and classify acoustic events such as gunshots. The system has been tested in open and closed shooting ranges and tested firearms are 9 mm short gun, 6.35 mm short gun, .22 short gun, and .22 rifle gun with various subsonic and supersonic ammunition. As ‘false alarms’, sets of different impulse acoustic events like door slams, breaking glass, etc. have been used. Localisation and classification algorithms are also introduced. To successfully classify the tested acoustic signals, Continuous Wavelet and Mel Frequency Transformation methods have been used for the signal processing, and the fully two-layer connected neural network has been implemented. The results show that the acoustic detector can be used for reliable gunshot detection, localisation, and classification.</p>


Sign in / Sign up

Export Citation Format

Share Document