High bandwidth airborne acoustic detection system (HBADS) for circular synthetic aperture acoustic imaging of canonical ground targets

2019 ◽  
Vol 146 (4) ◽  
pp. 3079-3079
Author(s):  
Steven S. Bishop ◽  
Timothy R. Moore ◽  
Peter Gugino ◽  
Brett Smith ◽  
Kathryn P. Kirkwood ◽  
...  
2013 ◽  
Vol 35 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Donhyug Kang ◽  
Seonho Lim ◽  
Hyungbeen Lee ◽  
Jaewon Doh ◽  
Youn-Ho Lee ◽  
...  

Author(s):  
Gerald B. Anderson

Trackside Acoustic Detection System (TADS®) development spearheaded implementation of an acoustic freight car roller bearing detector whose purpose is to prevent in-service bearing failures (burned off journals and hot bearing detector train stops). The means of accomplishing this goal is by providing the user with a warning of internal bearing defects or degradation with component involvement and severity information. The Transportation Technology Center, Inc. (TTCI) began the TADS® development process in 1994 with basic research into bearing defect acoustic emissions. Subsequently, TTCI conducted prototype testing on a North American railroad, constructed and installed of several international beta test systems, and finally has sold production systems in North America and internationally. There are currently about 40 TADS® sites in operation world-wide with 2.0 or more systems scheduled for installation in 2007. The original mission for TADS® in North America was an early warning of bearing degradation to allow for scheduled maintenance, but after initial evaluation, this mission enlarged to include notification of potentially high risk bearings. The high risk bearing is defined as one with fairly large areas of internal damage and at an increased risk of overheating or failing in service. The high risk bearing has a different acoustic signature, dissimilar to that of smaller defects. This paper will outline the change in mission for this detector and describe the development of an improved capability for detecting these high risk bearings.


Author(s):  
John A. Judge ◽  
Joseph F. Vignola ◽  
Aldo A. J. Glean ◽  
Teresa J. Ryan ◽  
Chelsea E. Good ◽  
...  

Synthetic aperture acoustic (SAA) imaging is a technique for remotely obtaining information about the location, geometry, and mechanical properties of objects based on the way they scatter incident acoustic energy. Results are presented for an experimental investigation of the use of SAA imaging to detect non-metallic cords of different sizes laid in various configurations on the ground surface in an outdoor urban environment. Interest in this application of SAA stems from the fact that non-metallic cords are not readily detectable with synthetic aperture radar (SAR) and that the SAA imaging approach represents a relatively inexpensive alternative or supplement to SAR. The measurement system is comprised of a mobile acoustic transceiver (a speaker and microphone) that broadcasts a burst chirp with a bandwidth of 2–15 kHz. The recorded signal is used to form a two-dimensional image of the distribution of acoustic scatterers within the scene. For this study, five different diameters (2–15mm) of nylon cord laid on the ground were imaged in different configurations. These measurements were made in the presence of urban ambient noise of varying levels. The goal of this study was to identify the effect of environmental noise and other parameters on detectability. The results demonstrate that non-metallic cords can be detected acoustically if the angle to the transceiver path is sufficiently small.


Sign in / Sign up

Export Citation Format

Share Document