Intelligent Control of a Flexible Manipulator Using a Robust Controller

Author(s):  
Lingli Cui ◽  
Jianyu Zhang ◽  
Lixin Gao
Robotica ◽  
2012 ◽  
Vol 31 (4) ◽  
pp. 669-677 ◽  
Author(s):  
S. Farokh Atashzar ◽  
M. Shahbazi ◽  
H. A. Talebi ◽  
F. Towhidkhah

SUMMARYIn this paper, a composite controller is proposed for single-link flexible manipulators exposed to external tip force disturbances. In the proposed scheme, the extended Kalman filter is utilized to observe the environmental forces and the Lyapunov redesign robust controller is applied to control the destabilizing effect of the observation errors in noisy situations. The observed force can be utilized in different applications (such as tele-surgical robotics) in order to eliminate the necessity of additional force sensors. This fact is important for structural miniaturization and cost reduction. The main contributions of this paper are (1) proposing a disturbance observation technique for in-contact flexible link manipulators (note that the challenge of Jacobian singularity is studied as a possible diverging factor of the observation) and (2) proposing the composite robust controller to eliminate the destabilizing effect of estimation errors. The advantages of the proposed control scheme over the conventional techniques are analyzed. Simulation results are given for a single-link flexible manipulator to illustrate the effectiveness of the composite control technique and experimental results are given to validate the performance of the observation method.


Author(s):  
Ya Zhang

With the rapid development of intelligent manufacturing and Internet technology, the industrial system has entered a new stage of development. As an indispensable carrier for intelligent manufacturing and industrial development, robots are expanding their applications. Among them, the flexible mechanical arm has the advantages of light weight, low energy consumption and low inertia compared with the bulky rigid mechanical arm, and has been increasingly valued. The flexible manipulator is a very complex dynamic system whose dynamic equations are characterized by nonlinearity, strong coupling and time-varying. Therefore, this paper uses the most common and effective method to establish the dynamic model of the flexible manipulator using the Lagrange equation. Due to the uncertain system parameters, lack of control of the trajectory and the influence of load changes and external disturbances, the flexible manipulator has great uncertainty in its control process, and the traditional control methods have not very good control effect. Based on this, this paper proposes a combination of dynamic pattern recognition theory and flexible joint manipulator intelligent control method for the two-link flexible manipulator, and uses the new GA-RBF neural network closed-loop adaptive control method to achieve high precision. Trajectory tracking ensures stability in a shorter time. The simulation results show that the intelligent joint control method based on dynamic pattern recognition has better trajectory tracking and autonomous fast recognition dynamic mode.


Sign in / Sign up

Export Citation Format

Share Document