Robust vehicle detection and tracking method for Blind Spot Detection System by using vision sensors

Author(s):  
Seunghwan Baek ◽  
Heungseob Kim ◽  
Kwangsuck Boo
2020 ◽  
Vol 10 (11) ◽  
pp. 3986
Author(s):  
Tuan-Anh Pham ◽  
Myungsik Yoo

In recent years, vision-based vehicle detection has received considerable attention in the literature. Depending on the ambient illuminance, vehicle detection methods are classified as daytime and nighttime detection methods. In this paper, we propose a nighttime vehicle detection and tracking method with occlusion handling based on vehicle lights. First, bright blobs that may be vehicle lights are segmented in the captured image. Then, a machine learning-based method is proposed to classify whether the bright blobs are headlights, taillights, or other illuminant objects. Subsequently, the detected vehicle lights are tracked to further facilitate the determination of the vehicle position. As one vehicle is indicated by one or two light pairs, a light pairing process using spatiotemporal features is applied to pair vehicle lights. Finally, vehicle tracking with occlusion handling is applied to refine incorrect detections under various traffic situations. Experiments on two-lane and four-lane urban roads are conducted, and a quantitative evaluation of the results shows the effectiveness of the proposed method.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 555-555
Author(s):  
Neil Charness ◽  
Dustin Souders ◽  
Ryan Best ◽  
Nelson Roque ◽  
JongSung Yoon ◽  
...  

Abstract Older adults are at greater risk of death and serious injury in transportation crashes which have been increasing in older adult cohorts relative to younger cohorts. Can technology provide a safer road environment? Even if technology can mitigate crash risk, is it acceptable to older road users? We outline the results from several studies that tested 1) whether advanced driver assistance systems (ADAS) can improve older adult driving performance, 2) older adults’ acceptance of ADAS and Autonomous Vehicle (AV) systems, and 3) perceptions of value for ADAS systems, particularly for blind-spot detection systems. We found that collision avoidance warning systems improved older adult simulator driving performance, but not lane departure warning systems. In a young to middle-aged sample the factor “concern with AV” showed age effects with older drivers less favorable. Older drivers, however, valued an active blind spot detection system more than younger drivers.


Author(s):  
Adhi Prahara ◽  
Ahmad Azhari ◽  
Murinto Murinto

Vehicle has several types and each of them has different color, size, and shape. The appearance of vehicle also changes if viewed from different viewpoint of traffic surveillance camera. This situation can create many possibilities of vehicle poses. However, the one in common, vehicle pose usually follows road direction. Therefore, this research proposes a method to estimate the pose of vehicle for vehicle detection and tracking based on road direction. Vehicle training data are generated from 3D vehicle models in four-pair orientation categories. Histogram of Oriented Gradients (HOG) and Linear-Support Vector Machine (Linear-SVM) are used to build vehicle detectors from the data. Road area is extracted from traffic surveillance image to localize the detection area. The pose of vehicle which estimated based on road direction will be used to select a suitable vehicle detector for vehicle detection process. To obtain the final vehicle object, vehicle line checking method is applied to the vehicle detection result. Finally, vehicle tracking is performed to give label on each vehicle. The test conducted on various viewpoints of traffic surveillance camera shows that the method effectively detects and tracks vehicle by estimating the pose of vehicle. Performance evaluation of the proposed method shows 0.9170 of accuracy and 0.9161 of balance accuracy (BAC).


Sign in / Sign up

Export Citation Format

Share Document