Energy Consumption of Batch and Online Data Stream Learning Models for Smartphone-based Human Activity Recognition

Author(s):  
Ilham Amezzane ◽  
Amine Berrazzouk ◽  
Youssef Fakhri ◽  
Mohamed El Aroussi ◽  
Mohamed Bakhouya
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2760
Author(s):  
Seungmin Oh ◽  
Akm Ashiquzzaman ◽  
Dongsu Lee ◽  
Yeonggwang Kim ◽  
Jinsul Kim

In recent years, various studies have begun to use deep learning models to conduct research in the field of human activity recognition (HAR). However, there has been a severe lag in the absolute development of such models since training deep learning models require a lot of labeled data. In fields such as HAR, it is difficult to collect data and there are high costs and efforts involved in manual labeling. The existing methods rely heavily on manual data collection and proper labeling of the data, which is done by human administrators. This often results in the data gathering process often being slow and prone to human-biased labeling. To address these problems, we proposed a new solution for the existing data gathering methods by reducing the labeling tasks conducted on new data based by using the data learned through the semi-supervised active transfer learning method. This method achieved 95.9% performance while also reducing labeling compared to the random sampling or active transfer learning methods.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6486
Author(s):  
Martin Khannouz ◽  
Tristan Glatard

This paper evaluates data stream classifiers from the perspective of connected devices, focusing on the use case of Human Activity Recognition. We measure both the classification performance and resource consumption (runtime, memory, and power) of five usual stream classification algorithms, implemented in a consistent library, and applied to two real human activity datasets and three synthetic datasets. Regarding classification performance, the results show the overall superiority of the Hoeffding Tree, the Mondrian forest, and the Naïve Bayes classifiers over the Feedforward Neural Network and the Micro Cluster Nearest Neighbor classifiers on four datasets out of six, including the real ones. In addition, the Hoeffding Tree and—to some extent—the Micro Cluster Nearest Neighbor, are the only classifiers that can recover from a concept drift. Overall, the three leading classifiers still perform substantially worse than an offline classifier on the real datasets. Regarding resource consumption, the Hoeffding Tree and the Mondrian forest are the most memory intensive and have the longest runtime; however, no difference in power consumption is found between classifiers. We conclude that stream learning for Human Activity Recognition on connected objects is challenged by two factors which could lead to interesting future work: a high memory consumption and low F1 scores overall.


2016 ◽  
Vol 72 (10) ◽  
pp. 3927-3959 ◽  
Author(s):  
Simon Fong ◽  
Kexing Liu ◽  
Kyungeun Cho ◽  
Raymond Wong ◽  
Sabah Mohammed ◽  
...  

2019 ◽  
Vol 25 (2) ◽  
pp. 743-755 ◽  
Author(s):  
Shaohua Wan ◽  
Lianyong Qi ◽  
Xiaolong Xu ◽  
Chao Tong ◽  
Zonghua Gu

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5206
Author(s):  
Enida Cero Dinarević ◽  
Jasmina Baraković Husić ◽  
Sabina Baraković

Human activity recognition (HAR) is a classification process that is used for recognizing human motions. A comprehensive review of currently considered approaches in each stage of HAR, as well as the influence of each HAR stage on energy consumption and latency is presented in this paper. It highlights various methods for the optimization of energy consumption and latency in each stage of HAR that has been used in literature and was analyzed in order to provide direction for the implementation of HAR in health and wellbeing applications. This paper analyses if and how each stage of the HAR process affects energy consumption and latency. It shows that data collection and filtering and data segmentation and classification stand out as key stages in achieving a balance between energy consumption and latency. Since latency is only critical for real-time HAR applications, the energy consumption of sensors and devices stands out as a key challenge for HAR implementation in health and wellbeing applications. Most of the approaches in overcoming challenges related to HAR implementation take place in the data collection, filtering and classification stages, while the data segmentation stage needs further exploration. Finally, this paper recommends a balance between energy consumption and latency for HAR in health and wellbeing applications, which takes into account the context and health of the target population.


2021 ◽  
pp. 129-159
Author(s):  
Mahbuba Tasmin ◽  
Sharif Uddin Ruman ◽  
Taoseef Ishtiak ◽  
Arif-ur-Rahman Chowdhury Suhan ◽  
Redwan Hasif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document