A lower limb exoskeleton research platform to investigate human-robot interaction

Author(s):  
Volker Bartenbach ◽  
Dario Wyss ◽  
Dominique Seuret ◽  
Robert Riener
2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhenlei Chen ◽  
Qing Guo ◽  
Huiyu Xiong ◽  
Dan Jiang ◽  
Yao Yan

AbstractIn this study, a humanoid prototype of 2-DOF (degrees of freedom) lower limb exoskeleton is introduced to evaluate the wearable comfortable effect between person and exoskeleton. To improve the detection accuracy of the human-robot interaction torque, a BPNN (backpropagation neural networks) is proposed to estimate this interaction force and to compensate for the measurement error of the 3D-force/torque sensor. Meanwhile, the backstepping controller is designed to realize the exoskeleton's passive position control, which means that the person passively adapts to the exoskeleton. On the other hand, a variable admittance controller is used to implement the exoskeleton's active follow-up control, which means that the person's motion is motivated by his/her intention and the exoskeleton control tries best to improve the human-robot wearable comfortable performance. To improve the wearable comfortable effect, serval regular gait tasks with different admittance parameters and step frequencies are statistically performed to obtain the optimal admittance control parameters. Finally, the BPNN compensation algorithm and two controllers are verified by the experimental exoskeleton prototype with human-robot cooperative motion.


AI Magazine ◽  
2017 ◽  
Vol 37 (4) ◽  
pp. 83-88
Author(s):  
Christopher Amato ◽  
Ofra Amir ◽  
Joanna Bryson ◽  
Barbara Grosz ◽  
Bipin Indurkhya ◽  
...  

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2016 Spring Symposium Series on Monday through Wednesday, March 21-23, 2016 at Stanford University. The titles of the seven symposia were (1) AI and the Mitigation of Human Error: Anomalies, Team Metrics and Thermodynamics; (2) Challenges and Opportunities in Multiagent Learning for the Real World (3) Enabling Computing Research in Socially Intelligent Human-Robot Interaction: A Community-Driven Modular Research Platform; (4) Ethical and Moral Considerations in Non-Human Agents; (5) Intelligent Systems for Supporting Distributed Human Teamwork; (6) Observational Studies through Social Media and Other Human-Generated Content, and (7) Well-Being Computing: AI Meets Health and Happiness Science.


Sign in / Sign up

Export Citation Format

Share Document