Passive Stiffness Reduction in Human Ankle Joint Mechanical Impedance When Exposed to Externally Imposed Movement

Author(s):  
Li Zhi ◽  
Elliott J. Rouse ◽  
Timothy Reissman
1997 ◽  
Vol 76 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Christophe Cornu ◽  
Maria-Izabel Almeida Silveira ◽  
F. Goubel

2011 ◽  
Vol 105 (5) ◽  
pp. 2132-2149 ◽  
Author(s):  
Anindo Roy ◽  
Hermano I. Krebs ◽  
Christopher T. Bever ◽  
Larry W. Forrester ◽  
Richard F. Macko ◽  
...  

Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults.


Author(s):  
Patrick Ho ◽  
Hyunglae Lee ◽  
Mohammad A. Rastgaar ◽  
Hermano Igo Krebs ◽  
Neville Hogan

This article presents the results of two in-vivo studies providing measurements of human static ankle mechanical impedance. Accurate measurements of ankle impedance when muscles were voluntarily activated were obtained using a therapeutic robot, Anklebot, and an electromyographic recording system. Important features of ankle impedance, and their variation with muscle activity, are discussed, including magnitude, symmetry and directions of minimum and maximum impedance. Voluntary muscle activation has a significant impact on ankle impedance, increasing it by up to a factor of three in our experiments. Furthermore, significant asymmetries and deviations from a linear two-spring model are present in many subjects, indicating that ankle impedance has a complex and individually idiosyncratic structure. We propose the use of Fourier series as a general representation, providing both insight and a precise quantitative characterization of human static ankle impedance.


2000 ◽  
Vol 21 (7) ◽  
pp. 602-615 ◽  
Author(s):  
Alberto Leardini ◽  
John J. O'Connor ◽  
Fabio Catani ◽  
Sandro Giannini

2018 ◽  
Vol 12 (1) ◽  
Author(s):  
Evandro Ficanha ◽  
Guilherme Ribeiro ◽  
Lauren Knop ◽  
Mo Rastgaar

An understanding of the time-varying mechanical impedance of the ankle during walking is fundamental in the design of active ankle-foot prostheses and lower extremity rehabilitation devices. This paper describes the estimation of the time-varying mechanical impedance of the human ankle in both dorsiflexion–plantarflexion (DP) and inversion–eversion (IE) during walking in a straight line. The impedance was estimated using a two degrees-of-freedom (DOF) vibrating platform and instrumented walkway. The perturbations were applied at eight different axes of rotation combining different amounts of DP and IE rotations of four male subjects. The observed stiffness and damping were low at heel strike, increased during the mid-stance, and decreases at push-off. At heel strike, it was observed that both the damping and stiffness were larger in IE than in DP. The maximum average ankle stiffness was 5.43 N·m/rad/kg at 31% of the stance length (SL) when combining plantarflexion and inversion and the minimum average was 1.14 N·m/rad/kg at 7% of the SL when combining dorsiflexion and eversion. The maximum average ankle damping was 0.080 Nms/rad/kg at 38% of the SL when combining plantarflexion and inversion, and the minimum average was 0.016 Nms/rad/kg at 7% of the SL when combining plantarflexion and eversion. From 23% to 93% of the SL, the largest ankle stiffness and damping occurred during the combination of plantarflexion and inversion or dorsiflexion and eversion. These rotations are the resulting motion of the ankle's subtalar joint, suggesting that the role of this joint and the muscles involved in the ankle rotation are significant in the impedance modulation in both DP and IE during gait.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda L. Shorter ◽  
James K. Richardson ◽  
Suzanne B. Finucane ◽  
Varun Joshi ◽  
Keith Gordon ◽  
...  

AbstractIndividuals post-stroke experience persisting gait deficits due to altered joint mechanics, known clinically as spasticity, hypertonia, and paresis. In engineering, these concepts are described as stiffness and damping, or collectively as joint mechanical impedance, when considered with limb inertia. Typical clinical assessments of these properties are obtained while the patient is at rest using qualitative measures, and the link between the assessments and functional outcomes and mobility is unclear. In this study we quantify ankle mechanical impedance dynamically during walking in individuals post-stroke and in age-speed matched control subjects, and examine the relationships between mechanical impedance and clinical measures of mobility and impairment. Perturbations were applied to the ankle joint during the stance phase of walking, and least-squares system identification techniques were used to estimate mechanical impedance. Stiffness of the paretic ankle was decreased during mid-stance when compared to the non-paretic side; a change independent of muscle activity. Inter-limb differences in ankle joint damping, but not joint stiffness or passive clinical assessments, strongly predicted walking speed and distance. This work provides the first insights into how stroke alters joint mechanical impedance during walking, as well as how these changes relate to existing outcome measures. Our results inform clinical care, suggesting a focus on correcting stance phase mechanics could potentially improve mobility of chronic stroke survivors.


Sign in / Sign up

Export Citation Format

Share Document