scholarly journals Interpretation of the Directional Properties of Voluntarily Modulated Human Ankle Mechanical Impedance

Author(s):  
Patrick Ho ◽  
Hyunglae Lee ◽  
Mohammad A. Rastgaar ◽  
Hermano Igo Krebs ◽  
Neville Hogan

This article presents the results of two in-vivo studies providing measurements of human static ankle mechanical impedance. Accurate measurements of ankle impedance when muscles were voluntarily activated were obtained using a therapeutic robot, Anklebot, and an electromyographic recording system. Important features of ankle impedance, and their variation with muscle activity, are discussed, including magnitude, symmetry and directions of minimum and maximum impedance. Voluntary muscle activation has a significant impact on ankle impedance, increasing it by up to a factor of three in our experiments. Furthermore, significant asymmetries and deviations from a linear two-spring model are present in many subjects, indicating that ankle impedance has a complex and individually idiosyncratic structure. We propose the use of Fourier series as a general representation, providing both insight and a precise quantitative characterization of human static ankle impedance.

Author(s):  
Evandro M. Ficanha ◽  
Mohammad Rastgaar

This article compares stochastic estimates of human ankle mechanical impedance when ankle muscles were fully relaxed and co-contracting antagonistically. We employed Anklebot, a rehabilitation robot for the ankle to provide torque perturbations. Surface electromyography (EMG) was used to monitor muscle activation levels and these EMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions were recorded. The results also compared with the ankle impedance in inversion-eversion (IE) and dorsiflexion-plantarflexion (DP). Linear time-invariant transfer functions between the measured torques and angles were estimated for the Anklebot alone and when a human subject wore it; the difference between these functions provided an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of ankle.


Author(s):  
Hyunglae Lee ◽  
Patrick Ho ◽  
Mohammad A. Rastgaar ◽  
Hermano Igo Krebs ◽  
Neville Hogan

Characterization of multi-variable ankle mechanical impedance is crucial to understanding how the ankle supports lower-extremity function during interaction with the environment. This paper reports quantification of steady-state ankle impedance when muscles were active. Vector field approximation of repetitive measurements of the torque-angle relation in two degrees of freedom (inversion/eversion and dorsiflexion/plantarflexion) enabled assessment of spring-like and non-spring-like components. Experimental results of eight human subjects showed direction-dependent ankle impedance with greater magnitude than when muscles were relaxed. In addition, vector field analysis demonstrated a non-spring-like behavior when muscles were active, although this phenomenon was subtle in the unimpaired young subjects we studied.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 300 ◽  
Author(s):  
Ziyu Chen ◽  
Sunggi Noh ◽  
Rhonda D. Prisby ◽  
Jeong-Bong Lee

Modulations of fluid flow inside the bone intramedullary cavity has been found to stimulate bone cellular activities and augment bone growth. However, study on the efficacy of the fluid modulation has been limited to external syringe pumps connected to the bone intramedullary cavity through the skin tubing. We report an implantable magnetic microfluidic pump which is suitable for in vivo studies in rodents. A compact microfluidic pump (22 mm diameter, 5 mm in thickness) with NdFeB magnets was fabricated in polydimethylsiloxane (PDMS) using a set of stainless-steel molds. An external actuator with a larger magnet was used to wirelessly actuate the magnetic microfluidic pump. The characterization of the static pressure of the microfluidic pump as a function of size of magnets was assessed. The dynamic pressure of the pump was also characterized to estimate the output of the pump. The magnetic microfluidic pump was implanted into the back of a Fischer-344 rat and connected to the intramedullary cavity of the femur using a tube. On-demand wireless magnetic operation using an actuator outside of the body was found to induce pressure modulation of up to 38 mmHg inside the femoral intramedullary cavity of the rat.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S576-S576
Author(s):  
Janam J Dave ◽  
Adilene Sandoval ◽  
Jon Olson ◽  
Jill Adler-Moore

Abstract Background Immunocompromised patients are very susceptible to pulmonary aspergillosis causing 50% mortality with present treatments, indicating a need for improved therapy. To address this, we standardized a nebulization method for effectively delivering liposomal amphotericin B (AmBisome®, AmBi) into lungs of Aspergillus fumigatus-infected mice. Methods AmBi particle characterization was done with a Cascade particle impactor and a Schuco S5000 nebulizer containing 1.33 mg/mL AmBi. For in vivo studies, AmBi was nebulized (neb) into a 12 compartment chamber (one mouse/compartment), following immunosuppression with 28 mg/kg triamcinolone IP (d-3, -1, +1). Mice were challenged d0 with 9 x 106A. fumigatus (ATCC#13073) and 4 hours post-challenge, divided into 5 groups (n = 12/gp): 5 days of 20 min/day neb AmBi (Gp1), 5 days of 10 min/day neb AmBi (Gp2), 20 min/day neb AmBi days 0, 1, 3, 5, 7 (Gp 3), 5 days of intravenous(IV) AmBi 7.5 mg/kg/day (Gp4) and IV PBS (Gp5). Seven mice/gp were monitored for survival to d21 and lungs, livers, kidneys, spleens (5 mice/gp) analyzed for mean amphotericin B µg/g and CFU/g. Results 87% of neb AmBi particles were between 0.43 mm to 3.3 mm allowing for drug penetration into 1°, 2° and terminal bronchi, bronchioles, and alveoli. This resulted in very good protection, with 20 min daily neb treatments (Gp1) giving 100% survival and 10 min daily neb treatments producing 71% survival (Gp2). There were no survivors in the PBS gp (P < 0.02 vs. Gp1 and Gp2). Every other day neb AmBi or daily IV AmBi was less effective (43% survival). In addition, neb AmBi for 20 min (Gp1) yielded significantly lower fungal burden in lungs vs. all other AmBi treatments (P < 0.02). While drug was detected in lungs of mice given 20 min of neb AmBi (2.6 µg/g), there was no drug detected in livers, kidneys or spleens of any mice given neb AmBi. In comparison, with IV AmBi, drug was detected in the lungs (7 µg/g), livers (204 µg/g), kidneys (38 µg/g), and spleens (114 µg/g). Conclusion Daily AmBi nebulization was an effective and potentially less nephrotoxic treatment for murine pulmonary aspergillosis since it achieved significantly lower tissue fungal burden and much better survival vs. daily IV AmBi, without delivering drug to the kidneys. Disclosures All authors: No reported disclosures.


Drug Delivery ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 791-797 ◽  
Author(s):  
Bhuvaneshwar Vaidya ◽  
Manasa K. Nayak ◽  
Debabrata Dash ◽  
Govind P. Agrawal ◽  
Suresh P. Vyas

Author(s):  
Evandro M. Ficanha ◽  
Guilherme Ribeiro ◽  
Mohammad Rastgaar Aagaah

This paper describes in detail the fabrication of an instrumented walkway for estimation of the ankle mechanical impedance in both dorsiflexion-plantarflexion (DP) and in inversion-eversion (IE) directions during walking in arbitrary directions and standing. The platform consists of two linear actuators, each capable of generating ±351.3 N peak force that are mechanically coupled to a force plate using Bowden cables. The applied forces cause the force plate to rotate in two degrees of freedom (DOF) and transfer torques to the human ankle to generate DP and IE rotations. The relative rotational motion of the foot with respect to the shin is recorded using a motion capture camera system while the forces applied to the foot are measured with the force plate, from which the torques applied to the ankle are calculated. The analytical methods required for the estimation of the ankle torques, rotations, and impedances are presented. To validate the system, a mockup with known stiffness was used, and it was shown that the developed system was capable of properly estimating the stiffness of the mockup in two DOF with less than 5% error. Also, a preliminary experiment with a human subject in standing position was performed, and the estimated quasi-static impedance of the ankle was estimated at 319 Nm/rad in DP and 119 Nm/rad in IE.


1991 ◽  
Vol 17 (2) ◽  
pp. 543-551 ◽  
Author(s):  
John C. Ford ◽  
Felix W. Wehrli

Sign in / Sign up

Export Citation Format

Share Document