scholarly journals Electric Field Distribution in HVDC Cable Joint in Non-Stationary Conditions

Author(s):  
Gilbert Teyssedre ◽  
Thi Thu Nga Vu ◽  
Severine Le Roy
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5401
Author(s):  
Thi Thu Nga Vu ◽  
Gilbert Teyssedre ◽  
Séverine Le Roy

Accessories such as joints and terminations represent weak points in HVDC cable systems. The DC field distribution is intimately dependent on the thermal conditions of the accessory and on material properties. Moreover, there is no available method to probe charge distribution in these conditions. In this work, the field distribution in non-stationary conditions, both thermally and electrically, is computed considering crosslinked polyethylene (XLPE) as cable insulation and different insulating materials (silicone, rubber, XLPE) for a 200 kV joint assembled in a same geometry. In the conditions used, i.e., temperatures up to 70 °C, and with the material properties considered, the dielectric time constant appears of the same order or longer than the thermal one and is of several hours. This indicates that both physical phenomena need to be considered for modelling the electric field distribution. Both the radial and the tangential field distributions are analysed, and focus is given on the field distribution under the stress cone on the ground side and near the central deflector on the high voltage side of the joint. We show that the position of the maximum field varies in time in a way that is not easy to anticipate. Under the cone, the smallest tangential field is obtained with the joint insulating material having the highest electrical conductivity. This results from a shift of the field towards the cable insulation in which the geometrical features produce a weaker axial component of the field. At the level of the central deflector, it is clear that the tangential field is higher when the mismatch between the conductivity of the two insulations is larger. In addition, the field grows as a function of time under stress. This work shows the need of precise data on materials conductivity and the need of probing field distribution in 3D.


2017 ◽  
Vol 5 (3) ◽  
pp. 96
Author(s):  
I. Made Yulistya Negara ◽  
Dimas Anton Asfani ◽  
Daniar Fahmi ◽  
Yusrizal Afif

2020 ◽  
Vol 12 ◽  
Author(s):  
Jyoti Katyal ◽  
Shivani Gautam

Background: A relatively narrow LSPR peak and a strong inter band transition ranging around 800 nm makes Al strongly plasmonic active material. Usually, Al nanoparticles are preferred for UV-plasmonic as the SPR of small size Al nanoparticles locates in deep UV-UV region of the optical spectrum. This paper focused on tuning the LSPR of Al nanostructure towards infrared region by coating Au layer. The proposed structure has Au as outer layer which prevent the further oxidation of Al nanostructure. Methods: The Finite Difference Time Domain (FDTD) and Plasmon Hybridization Theory has been used to evaluated the LSPR and field enhancement of single and dimer Al-Al2O3-Au MDM nanostructure. Results: It is observed that the resonance mode show dependence on the thickness of Al2O3 layer and also on the composition of nanostructure. The Au layered MDM nanostructure shows two peak of equal intensities simultaneously in UV and visible region tuned to NIR region. The extinction spectra and electric field distribution profiles of dimer nanoparticles are compared with monomer to reveal the extent of coupling. The dimer configuration shows higher field enhancement ~107 at 1049 nm. By optimizing the thickness of dielectric layer the MDM nanostructure can be used over UV-visible-NIR region. Conclusion: The LSPR peak shows dependence on the thickness of dielectric layer and also on the composition of nanostructure. It has been observed that optimization of size and thickness of dielectric layer can provide two peaks of equal intensities in UV and Visible region which is advantageous for many applications. The electric field distribution profiles of dimer MDM nanostructure enhanced the field by ~107 in visible and NIR region shows its potential towards SERS substrate. The results of this study will provide valuable information for the optimization of LSPR of Al-Al2O3-Au MDM nanostructure to have high field enhancement.


Sign in / Sign up

Export Citation Format

Share Document