Bubblesort star graphs: a new interconnection network

Author(s):  
Zi-Tsan Chou ◽  
Chiun-Chieh Hsu ◽  
Jang-Ping Sheu
Author(s):  
Hyeong-Ok Lee ◽  
Jong-Seok Kim ◽  
Kyoung-Wook Park ◽  
Jeonghyun Seo ◽  
Eunseuk Oh

2009 ◽  
Vol 10 (03) ◽  
pp. 189-204 ◽  
Author(s):  
EDDIE CHENG ◽  
KE QIU ◽  
ZHIZHANG SHEN

An important and interesting parameter of an interconnection network is the number of vertices of a specific distance from a specific vertex. This is known as the surface area or the Whitney number of the second kind. In this paper, we give explicit formulas for the surface areas of the (n, k)-star graphs and the arrangement graphs via the generating function technique. As a direct consequence, these formulas will also provide such explicit formulas for the star graphs, the alternating group graphs and the split-stars since these graphs are related to the (n, k)-star graphs and the arrangement graphs. In addition, we derive the average distances for these graphs.


2018 ◽  
Vol 29 (03) ◽  
pp. 377-389 ◽  
Author(s):  
Parisa Derakhshan ◽  
Walter Hussak

In interconnection network topologies, the [Formula: see text]-dimensional star graph [Formula: see text] has [Formula: see text] vertices corresponding to permutations [Formula: see text] of [Formula: see text] symbols [Formula: see text] and edges which exchange the positions of the first symbol [Formula: see text] with any one of the other symbols. The star graph compares favorably with the familiar [Formula: see text]-cube on degree, diameter and a number of other parameters. A desirable property which has not been fully evaluated in star graphs is the presence of multiple edge-disjoint Hamilton cycles which are important for fault-tolerance. The only known method for producing multiple edge-disjoint Hamilton cycles in [Formula: see text] has been to label the edges in a certain way and then take images of a known base 2-labelled Hamilton cycle under different automorphisms that map labels consistently. However, optimal bounds for producing edge-disjoint Hamilton cycles in this way, and whether Hamilton decompositions can be produced, are not known for any [Formula: see text] other than for the case of [Formula: see text] which does provide a Hamilton decomposition. In this paper we show that, for all n, not more than [Formula: see text], where [Formula: see text] is Euler’s totient function, edge-disjoint Hamilton cycles can be produced by such automorphisms. Thus, for non-prime [Formula: see text], a Hamilton decomposition cannot be produced. We show that the [Formula: see text] upper bound can be achieved for all even [Formula: see text]. In particular, if [Formula: see text] is a power of 2, [Formula: see text] has a Hamilton decomposable spanning subgraph comprising more than half of the edges of [Formula: see text]. Our results produce a better than twofold improvement on the known bounds for any kind of edge-disjoint Hamilton cycles in [Formula: see text]-dimensional star graphs for general [Formula: see text].


2020 ◽  
Vol 31 (03) ◽  
pp. 313-326
Author(s):  
Mei-Mei Gu ◽  
Jou-Ming Chang ◽  
Rong-Xia Hao

For an integer [Formula: see text], the [Formula: see text]-component connectivity of a graph [Formula: see text], denoted by [Formula: see text], is the minimum number of vertices whose removal from [Formula: see text] results in a disconnected graph with at least [Formula: see text] components or a graph with fewer than [Formula: see text] vertices. This naturally generalizes the classical connectivity of graphs defined in term of the minimum vertex-cut. This kind of connectivity can help us to measure the robustness of the graph corresponding to a network. The hierarchical star networks [Formula: see text], proposed by Shi and Srimani, is a new level interconnection network topology, and uses the star graphs as building blocks. In this paper, by exploring the combinatorial properties and fault-tolerance of [Formula: see text], we study the [Formula: see text]-component connectivity of hierarchical star networks [Formula: see text]. We obtain the results: [Formula: see text], [Formula: see text] and [Formula: see text] for [Formula: see text].


2019 ◽  
Vol 30 (05) ◽  
pp. 793-809
Author(s):  
Shu-Li Zhao ◽  
Rong-Xia Hao

The connectivity plays an important role in measuring the fault tolerance and reliability of interconnection networks. The generalized [Formula: see text]-connectivity of a graph [Formula: see text], denoted by [Formula: see text], is an important indicator of a network’s ability for fault tolerance and reliability. The bubble-sort star graph, denoted by [Formula: see text], is a well known interconnection network. In this paper, we show that [Formula: see text] for [Formula: see text], that is, for any three vertices in [Formula: see text], there exist [Formula: see text] internally disjoint trees connecting them in [Formula: see text] for [Formula: see text], which attains the upper bound of [Formula: see text] given by Li et al. for [Formula: see text].


2002 ◽  
Vol 03 (03n04) ◽  
pp. 231-243
Author(s):  
ABDEL-ELAH AL-AYYOUB ◽  
KHALED DAY

The hyperstar network has been recently proposed as an attractive product network that outperforms many popular topologies in various respects. In this paper we explore additional capabilities for the hyperstar network through an efficient parallel algorithm for solving the LU factorization problem on this network. The proposed parallel algorithm uses O(n) communication time on a hyperstar formed by the cross-product of two n-star graphs. This communication time improves the best known result for the hypercube-based LU factorization by a factor of log(n), and improves the best known result for the mesh-based LU factorization by a factor of (n - 1)!.


Sign in / Sign up

Export Citation Format

Share Document