Classification of lung nodules with feature extraction using CT scan images

Author(s):  
M Jayalaxmi ◽  
J Dhanaselvam ◽  
R Swathi ◽  
M Babu
Author(s):  
Varun Srivastava ◽  
Shilpa Gupta ◽  
Gopal Chaudhary ◽  
Arun Balodi ◽  
Manju Khari ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Priyanka Yadlapalli ◽  
D. Bhavana ◽  
Suryanarayana Gunnam

PurposeComputed tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. To detect the location of the cancerous lung nodules, this work uses novel deep learning methods. The majority of the early investigations used CT, magnetic resonance and mammography imaging. Using appropriate procedures, the professional doctor in this sector analyses these images to discover and diagnose the various degrees of lung cancer. All of the methods used to discover and detect cancer illnesses are time-consuming, expensive and stressful for the patients. To address all of these issues, appropriate deep learning approaches for analyzing these medical images, which included CT scan images, were utilized.Design/methodology/approachRadiologists currently employ chest CT scans to detect lung cancer at an early stage. In certain situations, radiologists' perception plays a critical role in identifying lung melanoma which is incorrectly detected. Deep learning is a new, capable and influential approach for predicting medical images. In this paper, the authors employed deep transfer learning algorithms for intelligent classification of lung nodules. Convolutional neural networks (VGG16, VGG19, MobileNet and DenseNet169) are used to constrain the input and output layers of a chest CT scan image dataset.FindingsThe collection includes normal chest CT scan pictures as well as images from two kinds of lung cancer, squamous and adenocarcinoma impacted chest CT scan images. According to the confusion matrix results, the VGG16 transfer learning technique has the highest accuracy in lung cancer classification with 91.28% accuracy, followed by VGG19 with 89.39%, MobileNet with 85.60% and DenseNet169 with 83.71% accuracy, which is analyzed using Google Collaborator.Originality/valueThe proposed approach using VGG16 maximizes the classification accuracy when compared to VGG19, MobileNet and DenseNet169. The results are validated by computing the confusion matrix for each network type.


Author(s):  
Bin Sun ◽  
Fengyin Liu ◽  
Yusun Zhou ◽  
Shaolei Jin ◽  
Qiang Li ◽  
...  
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1457
Author(s):  
Muazzam Maqsood ◽  
Sadaf Yasmin ◽  
Irfan Mehmood ◽  
Maryam Bukhari ◽  
Mucheol Kim

A typical growth of cells inside tissue is normally known as a nodular entity. Lung nodule segmentation from computed tomography (CT) images becomes crucial for early lung cancer diagnosis. An issue that pertains to the segmentation of lung nodules is homogenous modular variants. The resemblance among nodules as well as among neighboring regions is very challenging to deal with. Here, we propose an end-to-end U-Net-based segmentation framework named DA-Net for efficient lung nodule segmentation. This method extracts rich features by integrating compactly and densely linked rich convolutional blocks merged with Atrous convolutions blocks to broaden the view of filters without dropping loss and coverage data. We first extract the lung’s ROI images from the whole CT scan slices using standard image processing operations and k-means clustering. This reduces the search space of the model to only lungs where the nodules are present instead of the whole CT scan slice. The evaluation of the suggested model was performed through utilizing the LIDC-IDRI dataset. According to the results, we found that DA-Net showed good performance, achieving an 81% Dice score value and 71.6% IOU score.


Sign in / Sign up

Export Citation Format

Share Document