Research on Target Detection algorithm based on Deep Learning Technology

Author(s):  
Bingzhen Li ◽  
Wenzhi Jiang ◽  
Jiaojiao Gu
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weidong Zhao ◽  
Feng Chen ◽  
Hancheng Huang ◽  
Dan Li ◽  
Wei Cheng

In recent years, more and more scholars devoted themselves to the research of the target detection algorithm due to the continuous development of deep learning. Among them, the detection and recognition of small and complex targets are still a problem to be solved. The authors of this article have understood the shortcomings of the deep learning detection algorithm in detecting small and complex defect targets and would like to share a new improved target detection algorithm in steel surface defect detection. The steel surface defects will affect the quality of steel seriously. We find that most of the current detection algorithms for NEU-DET dataset detection accuracy are low, so we choose to verify a steel surface defect detection algorithm based on machine vision on this dataset for the problem of defect detection in steel production. A series of improvement measures are carried out in the traditional Faster R-CNN algorithm, such as reconstructing the network structure of Faster R-CNN. Based on the small features of the target, we train the network with multiscale fusion. For the complex features of the target, we replace part of the conventional convolution network with a deformable convolution network. The experimental results show that the deep learning network model trained by the proposed method has good detection performance, and the mean average precision is 0.752, which is 0.128 higher than the original algorithm. Among them, the average precision of crazing, inclusion, patches, pitted surface, rolled in scale and scratches is 0.501, 0.791, 0.792, 0.874, 0.649, and 0.905, respectively. The detection method is able to identify small target defects on the steel surface effectively, which can provide a reference for the automatic detection of steel defects.


2021 ◽  
Vol 18 (2) ◽  
pp. 499-516
Author(s):  
Yan Sun ◽  
Zheping Yan

The main purpose of target detection is to identify and locate targets from still images or video sequences. It is one of the key tasks in the field of computer vision. With the continuous breakthrough of deep machine learning technology, especially the convolutional neural network model shows strong Ability to extract image feature in the field of digital image processing. Although the model research of target detection based on convolutional neural network is developing rapidly, but there are still some problems in practical applications. For example, a large number of parameters requires high storage and computational costs in detected model. Therefore, this paper optimizes and compresses some algorithms by using early image detection algorithms and image detection algorithms based on convolutional neural networks. After training and learning, there will appear forward propagation mode in the application of CNN network model, providing the model for image feature extraction, integration processing and feature mapping. The use of back propagation makes the CNN network model have the ability to optimize learning and compressed algorithm. Then research discuss the Faster-RCNN algorithm and the YOLO algorithm. Aiming at the problem of the candidate frame is not significant which extracted in the Faster- RCNN algorithm, a target detection model based on the Significant area recommendation network is proposed. The weight of the feature map is calculated by the model, which enhances the saliency of the feature and reduces the background interference. Experiments show that the image detection algorithm based on compressed neural network image has certain feasibility.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuquan Chen ◽  
Hongxing Wang ◽  
Jie Shen ◽  
Xingwei Zhang ◽  
Xiaowei Gao

Deep learning technology has received extensive consideration in recent years, and its application value in target detection is also increasing day by day. In order to accelerate the practical process of deep learning technology in electric transmission line defect detection, the current work used the improved Faster R-CNN algorithm to achieve data-driven iterative training and defect detection functions for typical transmission line defect targets. Based on Faster R-CNN, we proposed an improved network that combines deformable convolution and feature pyramid modules and combined it with a data-driven iterative learning algorithm; it achieves extremely automated and intelligent transmission line defect target detection, forming an intelligent closed-loop image processing. The experimental results show that the increase of the recognition of improved Faster R-CNN network combined with data-driven iterative learning algorithm for the pin defect target is 31.7% more than Faster R-CNN. In the future, the proposed method can quickly improve the accuracy of transmission line defect target detection in a small sample and save manpower. It also provides some theoretical guidance for the practical work of transmission line defect target detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yi Lv ◽  
Zhengbo Yin ◽  
Zhezhou Yu

In order to improve the accuracy of remote sensing image target detection, this paper proposes a remote sensing image target detection algorithm DFS based on deep learning. Firstly, dimension clustering module, loss function, and sliding window segmentation detection are designed. The data set used in the experiment comes from GoogleEarth, and there are 6 types of objects: airplanes, boats, warehouses, large ships, bridges, and ports. Training set, verification set, and test set contain 73490 images, 22722 images, and 2138 images, respectively. It is assumed that the number of detected positive samples and negative samples is A and B, respectively, and the number of undetected positive samples and negative samples is C and D, respectively. The experimental results show that the precision-recall curve of DFS for six types of targets shows that DFS has the best detection effect for bridges and the worst detection effect for boats. The main reason is that the size of the bridge is relatively large, and it is clearly distinguished from the background in the image, so the detection difficulty is low. However, the target of the boat is very small, and it is easy to be mixed with the background, so it is difficult to detect. The MAP of DFS is improved by 12.82%, the detection accuracy is improved by 13%, and the recall rate is slightly decreased by 1% compared with YOLOv2. According to the number of detection targets, the number of false positives (FPs) of DFS is much less than that of YOLOv2. The false positive rate is greatly reduced. In addition, the average IOU of DFS is 11.84% higher than that of YOLOv2. For small target detection efficiency and large remote sensing image detection, the DFS algorithm has obvious advantages.


2021 ◽  
Vol 13 (21) ◽  
pp. 4377
Author(s):  
Long Sun ◽  
Jie Chen ◽  
Dazheng Feng ◽  
Mengdao Xing

Unmanned aerial vehicle (UAV) is one of the main means of information warfare, such as in battlefield cruises, reconnaissance, and military strikes. Rapid detection and accurate recognition of key targets in UAV images are the basis of subsequent military tasks. The UAV image has characteristics of high resolution and small target size, and in practical application, the detection speed is often required to be fast. Existing algorithms are not able to achieve an effective trade-off between detection accuracy and speed. Therefore, this paper proposes a parallel ensemble deep learning framework for unmanned aerial vehicle video multi-target detection, which is a global and local joint detection strategy. It combines a deep learning target detection algorithm with template matching to make full use of image information. It also integrates multi-process and multi-threading mechanisms to speed up processing. Experiments show that the system has high detection accuracy for targets with focal lengths varying from one to ten times. At the same time, the real-time and stable display of detection results is realized by aiming at the moving UAV video image.


2021 ◽  
Vol 13 (2) ◽  
pp. 281
Author(s):  
Bei Cheng ◽  
Zhengzhou Li ◽  
Bitong Xu ◽  
Xu Yao ◽  
Zhiquan Ding ◽  
...  

Deep learning technology has been extensively explored by existing methods to improve the performance of target detection in remote sensing images, due to its powerful feature extraction and representation abilities. However, these methods usually focus on the interior features of the target, but ignore the exterior semantic information around the target, especially the object-level relationship. Consequently, these methods fail to detect and recognize targets in the complex background where multiple objects crowd together. To handle this problem, a diversified context information fusion framework based on convolutional neural network (DCIFF-CNN) is proposed in this paper, which employs the structured object-level relationship to improve the target detection and recognition in complex backgrounds. The DCIFF-CNN is composed of two successive sub-networks, i.e., a multi-scale local context region proposal network (MLC-RPN) and an object-level relationship context target detection network (ORC-TDN). The MLC-RPN relies on the fine-grained details of objects to generate candidate regions in the remote sensing image. Then, the ORC-TDN utilizes the spatial context information of objects to detect and recognize targets by integrating an attentional message integrated module (AMIM) and an object relational structured graph (ORSG). The AMIM is integrated into the feed-forward CNN to highlight the useful object-level context information, while the ORSG builds the relations between a set of objects by processing their appearance features and geometric features. Finally, the target detection method based on DCIFF-CNN effectively represents the interior and exterior information of the target by exploiting both the multiscale local context information and the object-level relationships. Extensive experiments are conducted, and experimental results demonstrate that the proposed DCIFF-CNN method improves the target detection and recognition accuracy in complex backgrounds, showing superiority to other state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document