Reconstructing 3D Human Body Pose from Stereo Image Sequences Using Hierarchical Human Body Model Learning

Author(s):  
Hee-Deok Yang ◽  
Seong-Whan Lee
Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 159
Author(s):  
Paulo J. S. Gonçalves ◽  
Bernardo Lourenço ◽  
Samuel Santos ◽  
Rodolphe Barlogis ◽  
Alexandre Misson

The purpose of this work is to develop computational intelligence models based on neural networks (NN), fuzzy models (FM), support vector machines (SVM) and long short-term memory networks (LSTM) to predict human pose and activity from image sequences, based on computer vision approaches to gather the required features. To obtain the human pose semantics (output classes), based on a set of 3D points that describe the human body model (the input variables of the predictive model), prediction models were obtained from the acquired data, for example, video images. In the same way, to predict the semantics of the atomic activities that compose an activity, based again in the human body model extracted at each video frame, prediction models were learned using LSTM networks. In both cases the best learned models were implemented in an application to test the systems. The SVM model obtained 95.97% of correct classification of the six different human poses tackled in this work, during tests in different situations from the training phase. The implemented LSTM learned model achieved an overall accuracy of 88%, during tests in different situations from the training phase. These results demonstrate the validity of both approaches to predict human pose and activity from image sequences. Moreover, the system is capable of obtaining the atomic activities and quantifying the time interval in which each activity takes place.


Author(s):  
Bu S. Park ◽  
Sunder S. Rajan ◽  
Leonardo M. Angelone

We present numerical simulation results showing that high dielectric materials (HDMs) when placed between the human body model and the body coil significantly alter the electromagnetic field inside the body. The numerical simulation results show that the electromagnetic field (E, B, and SAR) within a region of interest (ROI) is concentrated (increased). In addition, the average electromagnetic fields decreased significantly outside the region of interest. The calculation results using a human body model and HDM of Barium Strontium Titanate (BST) show that the mean local SAR was decreased by about 56% (i.e., 18.7 vs. 8.2 W/kg) within the body model.


2009 ◽  
Vol 23 (17) ◽  
pp. 3586-3590 ◽  
Author(s):  
NUTTACHAI JUTONG ◽  
APIRAT SIRITARATIWAT ◽  
DUANGPORN SOMPONGSE ◽  
PORNCHAI RAKPONGSIRI

Electrostatic discharge (ESD) effects on GMR recording heads have been reported as the major cause of head failure. Since the information density in hard-disk drives has dramatically increased, the GMR head will be no longer in use. The tunneling magnetoresistive (TMR) read heads are initially introduced for a 100 Gbit/in2 density or more. Though the failure mechanism of ESD in GMR recording heads has not been explicitly understood in detail, a study to protect from this effect has to be done. As the TMR head has been commercially started, the ESD effect must be considered. This is the first time that the TMR equivalent circuit has been reported in order to evaluate the ESD effect. A standard human body model (HBM) is discharged across R+ and R- where the capacitances of flex on suspension (FOS) are varied. It is intriguingly found that the electrical characteristics of the TMR head during the discharge period depend on the discharge position. This may be explained in terms of the asymmetry impedance of TMR by using adapted Thevenin's theory. The effect of FOS components on TMR recording heads is also discussed.


Sign in / Sign up

Export Citation Format

Share Document