Disentangled Representation Learning for Controllable Image Synthesis: An Information-Theoretic Perspective

Author(s):  
Shichang Tang ◽  
Xu Zhou ◽  
Xuming He ◽  
Yi Ma
Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 151 ◽  
Author(s):  
Abdellatif Zaidi ◽  
Iñaki Estella-Aguerri ◽  
Shlomo Shamai (Shitz)

This tutorial paper focuses on the variants of the bottleneck problem taking an information theoretic perspective and discusses practical methods to solve it, as well as its connection to coding and learning aspects. The intimate connections of this setting to remote source-coding under logarithmic loss distortion measure, information combining, common reconstruction, the Wyner–Ahlswede–Korner problem, the efficiency of investment information, as well as, generalization, variational inference, representation learning, autoencoders, and others are highlighted. We discuss its extension to the distributed information bottleneck problem with emphasis on the Gaussian model and highlight the basic connections to the uplink Cloud Radio Access Networks (CRAN) with oblivious processing. For this model, the optimal trade-offs between relevance (i.e., information) and complexity (i.e., rates) in the discrete and vector Gaussian frameworks is determined. In the concluding outlook, some interesting problems are mentioned such as the characterization of the optimal inputs (“features”) distributions under power limitations maximizing the “relevance” for the Gaussian information bottleneck, under “complexity” constraints.


2020 ◽  
Author(s):  
Pengyu Cheng ◽  
Martin Renqiang Min ◽  
Dinghan Shen ◽  
Christopher Malon ◽  
Yizhe Zhang ◽  
...  

2021 ◽  
Vol 33 (1) ◽  
pp. 244-268
Author(s):  
Tomoya Sakai ◽  
Gang Niu ◽  
Masashi Sugiyama

Recent advances in weakly supervised classification allow us to train a classifier from only positive and unlabeled (PU) data. However, existing PU classification methods typically require an accurate estimate of the class-prior probability, a critical bottleneck particularly for high-dimensional data. This problem has been commonly addressed by applying principal component analysis in advance, but such unsupervised dimension reduction can collapse the underlying class structure. In this letter, we propose a novel representation learning method from PU data based on the information-maximization principle. Our method does not require class-prior estimation and thus can be used as a preprocessing method for PU classification. Through experiments, we demonstrate that our method, combined with deep neural networks, highly improves the accuracy of PU class-prior estimation, leading to state-of-the-art PU classification performance.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 208
Author(s):  
Amichai Painsky ◽  
Meir Feder ◽  
Naftali Tishby

Canonical Correlation Analysis (CCA) is a linear representation learning method that seeks maximally correlated variables in multi-view data. Nonlinear CCA extends this notion to a broader family of transformations, which are more powerful in many real-world applications. Given the joint probability, the Alternating Conditional Expectation (ACE) algorithm provides an optimal solution to the nonlinear CCA problem. However, it suffers from limited performance and an increasing computational burden when only a finite number of samples is available. In this work, we introduce an information-theoretic compressed representation framework for the nonlinear CCA problem (CRCCA), which extends the classical ACE approach. Our suggested framework seeks compact representations of the data that allow a maximal level of correlation. This way, we control the trade-off between the flexibility and the complexity of the model. CRCCA provides theoretical bounds and optimality conditions, as we establish fundamental connections to rate-distortion theory, the information bottleneck and remote source coding. In addition, it allows a soft dimensionality reduction, as the compression level is determined by the mutual information between the original noisy data and the extracted signals. Finally, we introduce a simple implementation of the CRCCA framework, based on lattice quantization.


Sign in / Sign up

Export Citation Format

Share Document