weakly supervised classification
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Vol 13 (24) ◽  
pp. 5009
Author(s):  
Lingbo Huang ◽  
Yushi Chen ◽  
Xin He

In recent years, supervised learning-based methods have achieved excellent performance for hyperspectral image (HSI) classification. However, the collection of training samples with labels is not only costly but also time-consuming. This fact usually causes the existence of weak supervision, including incorrect supervision where mislabeled samples exist and incomplete supervision where unlabeled samples exist. Focusing on the inaccurate supervision and incomplete supervision, the weakly supervised classification of HSI is investigated in this paper. For inaccurate supervision, complementary learning (CL) is firstly introduced for HSI classification. Then, a new method, which is based on selective CL and convolutional neural network (SeCL-CNN), is proposed for classification with noisy labels. For incomplete supervision, a data augmentation-based method, which combines mixup and Pseudo-Label (Mix-PL) is proposed. And then, a classification method, which combines Mix-PL and CL (Mix-PL-CL), is designed aiming at better semi-supervised classification capacity of HSI. The proposed weakly supervised methods are evaluated on three widely-used hyperspectral datasets (i.e., Indian Pines, Houston, and Salinas datasets). The obtained results reveal that the proposed methods provide competitive results compared to the state-of-the-art methods. For inaccurate supervision, the proposed SeCL-CNN has outperformed the state-of-the-art method (i.e., SSDP-CNN) by 0.92%, 1.84%, and 1.75% in terms of OA on the three datasets, when the noise ratio is 30%. And for incomplete supervision, the proposed Mix-PL-CL has outperformed the state-of-the-art method (i.e., AROC-DP) by 1.03%, 0.70%, and 0.82% in terms of OA on the three datasets, with 25 training samples per class.


2021 ◽  
Vol 33 (1) ◽  
pp. 244-268
Author(s):  
Tomoya Sakai ◽  
Gang Niu ◽  
Masashi Sugiyama

Recent advances in weakly supervised classification allow us to train a classifier from only positive and unlabeled (PU) data. However, existing PU classification methods typically require an accurate estimate of the class-prior probability, a critical bottleneck particularly for high-dimensional data. This problem has been commonly addressed by applying principal component analysis in advance, but such unsupervised dimension reduction can collapse the underlying class structure. In this letter, we propose a novel representation learning method from PU data based on the information-maximization principle. Our method does not require class-prior estimation and thus can be used as a preprocessing method for PU classification. Through experiments, we demonstrate that our method, combined with deep neural networks, highly improves the accuracy of PU class-prior estimation, leading to state-of-the-art PU classification performance.


Author(s):  
Shizhen Chang ◽  
Bo Du ◽  
Liangpei Zhang

The positive unlabeled (PU) learning aims to train a binary classifier from a set of positive labeled samples and other unlabeled samples. Much research has been done on this special branch of weakly supervised classification problems. Since only part of the positive class is labeled, the classical PU model trains the classifier assuming the class-prior is known. However, the true class prior is usually difficult to obtain and must be learned from the given data, and the traditional methods may not work. In this paper, we formulate a convex formulation to jointly solve the class-prior unknown problem and train an accurate classifier with no need of any class-prior assumptions or additional negative samples. The class prior is estimated by pursuing the optimal solution of gradient thresholding and the classifier is simultaneously trained by performing empirical unbiased risk. The detailed derivation and theoretical analysis of the proposed model are outlined, and a comparison of our experiments with other representative methods prove the superiority of our method.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jason A. Fries ◽  
Paroma Varma ◽  
Vincent S. Chen ◽  
Ke Xiao ◽  
Heliodoro Tejeda ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 301 ◽  
Author(s):  
Xinghua Dai ◽  
Shengrong Gong ◽  
Shan Zhong ◽  
Zongming Bao

One of the challenges in fine-grained classification is that subcategories with significant similarity are hard to be distinguished due to the equal treatment of all subcategories in existing algorithms. In order to solve this problem, a fine-grained image classification method by combining a bilinear convolutional neural network (B-CNN) and the measurement of subcategory similarities is proposed. Firstly, an improved weakly supervised localization method is designed to obtain the bounding box of the main object, which allows the model to eliminate the influence of background noise and obtain more accurate features. Then, sample features in the training set are computed by B-CNN so that the fuzzing similarity matrix for measuring interclass similarities can be obtained. To further improve classification accuracy, the loss function is designed by weighting triplet loss and softmax loss. Extensive experiments implemented on two benchmarks datasets, Stanford Cars-196 and Caltech-UCSD Birds-200-2011 (CUB-200-2011), show that the newly proposed method outperforms in accuracy several state-of-the-art weakly supervised classification models.


Sign in / Sign up

Export Citation Format

Share Document