The Energy Management Strategies of Residential Integrated Energy System Considering Integrated Demand Response

Author(s):  
Tengfei Ma ◽  
Wei Pei ◽  
Hao Xiao ◽  
Guobin Zhang ◽  
Shiqian Ma
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


2021 ◽  
Vol 13 (5) ◽  
pp. 2615
Author(s):  
Junqing Wang ◽  
Wenhui Zhao ◽  
Lu Qiu ◽  
Puyu Yuan

Since application of integrated energy systems (IESs) has formed a markedly increasing trend recently, selecting an appropriate integrated energy system construction scheme becomes essential to the energy supplier. This paper aims to develop a multi-criteria decision-making model for the evaluation and selection of an IES construction scheme equipped with smart energy management and control platform. Firstly, a comprehensive evaluation criteria system including economy, energy, environment, technology and service is established. The evaluation criteria system is divided into quantitative criteria denoted by interval numbers and qualitative criteria. Secondly, single-valued neutrosophic numbers are adopted to denote the qualitative criteria in the evaluation criteria system. Thirdly, in order to accommodate mixed data types consisting of both interval numbers and single-valued neutrosophic numbers, the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method is extended into a three-stage technique by introducing a fusion coefficient μ. Then, a real case in China is evaluated through applying the proposed method. Furthermore, a comprehensive discussion is made to analyze the evaluation result and verify the reliability and stability of the method. In short, this study provides a useful tool for the energy supplier to evaluate and select a preferred IES construction scheme.


2020 ◽  
Vol 12 (14) ◽  
pp. 5561 ◽  
Author(s):  
Bhagya Nathali Silva ◽  
Murad Khan ◽  
Kijun Han

The emergence of the Internet of Things (IoT) notion pioneered the implementation of various smart environments. Smart environments intelligibly accommodate inhabitants’ requirements. With rapid resource shrinkage, energy management has recently become an essential concern for all smart environments. Energy management aims to assure ecosystem sustainability, while benefiting both consumers and utility providers. Although energy management emerged as a solution that addresses challenges that arise with increasing energy demand and resource deterioration, further evolution and expansion are hindered due to technological, economical, and social barriers. This review aggregates energy management approaches in smart environments and extensively reviews a variety of recent literature reports on peak load shaving and demand response. Significant benefits and challenges of these energy management strategies were identified through the literature survey. Finally, a critical discussion summarizing trends and opportunities is given as a thread for future research.


Energy ◽  
2020 ◽  
Vol 201 ◽  
pp. 117589 ◽  
Author(s):  
Xu Zhu ◽  
Jun Yang ◽  
Xueli Pan ◽  
Gaojunjie Li ◽  
Yingqing Rao

Sign in / Sign up

Export Citation Format

Share Document