scholarly journals Designing Ferromagnetic Soft Robots (FerroSoRo) with Level-Set-Based Multiphysics Topology Optimization

Author(s):  
Jiawei Tian ◽  
Xuanhe Zhao ◽  
Xianfeng David Gu ◽  
Shikui Chen
Author(s):  
Jiawei Tian ◽  
Xuanhe Zhao ◽  
Xianfeng David Gu ◽  
Shikui Chen

Abstract Ferromagnetic soft materials (FSM) can generate flexible movement and shift morphology in response to an external magnetic field. They have been engineered to design products in a variety of promising applications, such as soft robots, compliant actuators, or bionic devices, et al. By using different patterns of magnetization in the soft elastomer matrix, ferromagnetic soft matters can achieve various shape changes. Although many magnetic soft robots have been designed and fabricated, they are limited by the designers’ intuition. Topology optimization (TO) is a systematically mathematical method to create innovative structures by optimizing the material layout within a design domain without relying on the designers’ intuition. It can be utilized to architect ferromagnetic soft active structures. Since many of these ‘soft machines’ exist in the form of thin-shell structures, in this paper, the extended level set method (X-LSM) and conformal mapping theory are employed to carry out topology optimization of the ferromagnetic soft actuator on manifolds. The objective function consists of a sub-objective function for the kinematics requirement and a sub-objective function for minimum compliance. Shape sensitivity analysis is derived using the material time derivative and adjoint variable method. Two examples, including a circular shell actuator and a flytrap structure, are studied to demonstrate the effectiveness of the proposed framework.


2021 ◽  
Author(s):  
Jiawei Tian ◽  
Xianfeng David Gu ◽  
Shikui Chen

Abstract Ferromagnetic soft materials can generate flexible mobility and changeable configurations under an external magnetic field. They are used in a wide variety of applications, such as soft robots, compliant actuators, flexible electronics, and bionic medical devices. The magnetic field enables fast and biologically safe remote control of the ferromagnetic soft material. The shape changes of ferromagnetic soft elastomers are driven by the ferromagnetic particles embedded in the matrix of a soft elastomer. The external magnetic field induces a magnetic torque on the magnetized soft material, causing it to deform. To achieve the desired motion, the soft active structure can be designed by tailoring the layouts of the ferromagnetic soft elastomers. This paper aims to optimize multi-material ferromagnetic actuators. Multi-material ferromagnetic flexible actuators are optimized for the desired kinematic performance using the reconciled level set method. This type of magnetically driven actuator can carry out more complex shape transformations by introducing ferromagnetic soft materials with more than one magnetization direction. Whereas many soft active actuators exist in the form of thin shells, the newly proposed extended level set method (X-LSM) is employed to perform conformal topology optimization of ferromagnetic soft actuators on the manifolds. The objective function comprises two sub-objective functions, one for the kinematic requirement and the other for minimal compliance. Shape sensitivity analysis is derived using the material time derivative and the adjoint variable method. Three examples are provided to demonstrate the effectiveness of the proposed framework.


2021 ◽  
Vol 385 ◽  
pp. 114016
Author(s):  
Andreas Neofytou ◽  
Tsung-Hui Huang ◽  
Sandilya Kambampati ◽  
Renato Picelli ◽  
Jiun-Shyan Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document