Multi-Material Topology Optimization of Ferromagnetic Soft Robots Using Reconciled Level Set Method

2021 ◽  
Author(s):  
Jiawei Tian ◽  
Xianfeng David Gu ◽  
Shikui Chen

Abstract Ferromagnetic soft materials can generate flexible mobility and changeable configurations under an external magnetic field. They are used in a wide variety of applications, such as soft robots, compliant actuators, flexible electronics, and bionic medical devices. The magnetic field enables fast and biologically safe remote control of the ferromagnetic soft material. The shape changes of ferromagnetic soft elastomers are driven by the ferromagnetic particles embedded in the matrix of a soft elastomer. The external magnetic field induces a magnetic torque on the magnetized soft material, causing it to deform. To achieve the desired motion, the soft active structure can be designed by tailoring the layouts of the ferromagnetic soft elastomers. This paper aims to optimize multi-material ferromagnetic actuators. Multi-material ferromagnetic flexible actuators are optimized for the desired kinematic performance using the reconciled level set method. This type of magnetically driven actuator can carry out more complex shape transformations by introducing ferromagnetic soft materials with more than one magnetization direction. Whereas many soft active actuators exist in the form of thin shells, the newly proposed extended level set method (X-LSM) is employed to perform conformal topology optimization of ferromagnetic soft actuators on the manifolds. The objective function comprises two sub-objective functions, one for the kinematic requirement and the other for minimal compliance. Shape sensitivity analysis is derived using the material time derivative and the adjoint variable method. Three examples are provided to demonstrate the effectiveness of the proposed framework.

Author(s):  
Jiawei Tian ◽  
Xuanhe Zhao ◽  
Xianfeng David Gu ◽  
Shikui Chen

Abstract Ferromagnetic soft materials (FSM) can generate flexible movement and shift morphology in response to an external magnetic field. They have been engineered to design products in a variety of promising applications, such as soft robots, compliant actuators, or bionic devices, et al. By using different patterns of magnetization in the soft elastomer matrix, ferromagnetic soft matters can achieve various shape changes. Although many magnetic soft robots have been designed and fabricated, they are limited by the designers’ intuition. Topology optimization (TO) is a systematically mathematical method to create innovative structures by optimizing the material layout within a design domain without relying on the designers’ intuition. It can be utilized to architect ferromagnetic soft active structures. Since many of these ‘soft machines’ exist in the form of thin-shell structures, in this paper, the extended level set method (X-LSM) and conformal mapping theory are employed to carry out topology optimization of the ferromagnetic soft actuator on manifolds. The objective function consists of a sub-objective function for the kinematics requirement and a sub-objective function for minimum compliance. Shape sensitivity analysis is derived using the material time derivative and adjoint variable method. Two examples, including a circular shell actuator and a flytrap structure, are studied to demonstrate the effectiveness of the proposed framework.


2020 ◽  
Vol 87 (4) ◽  
Author(s):  
Wei Chen ◽  
Lin Wang

Abstract Hard-magnetic soft materials (HMSMs) manufactured by embedding hard-magnetic particles in soft materials belong to a new type of soft active materials. The abilities of fast and complicated transformations of hard-magnetic soft structures provide a promising technology for soft robotics, flexible electronics, and biomedical devices. It is significant to investigate the mechanical behaviors of hard-magnetic soft structures for their better applications. In this work, a hard-magnetic soft beam under an external magnetic field is theoretically modeled and the exact solutions for its mechanical responses are presented. First, the governing equations and boundary conditions are derived based on the principle of minimum potential energy. To solve the derived governing equations analytically, a new polynomial fitting model for hyperelastic materials is proposed for the hard-magnetic soft beam. Then, the exact solutions of a cantilevered hard-magnetic soft beam actuated by a uniform magnetic field in any direction are obtained. The newly derived exact solutions are further verified by comparing current results with those from recent simulations and experiments. For large bending angles up to 90 deg and extreme bending angle up to 180 deg, quite consistent agreement among exact solutions, numerical simulations, and experimental observations can be achieved. Finally, using our theoretical model, the deformation of the hard-magnetic soft beam actuated by magnetic fields in an arbitrary direction with non-zero magnetic declination is explored. When the magnetic actuation is increased from a small level gradually, the hard-magnetic soft beam deflects and it would undergo small, large, and extreme bending deformations in sequence. It is very interesting that, when the magnetic actuation is sufficiently large, the hard-magnetic soft beam is stretched and its centerline tends to align with the external magnetic field direction, implying that the hard-magnetic soft beam undergoes a uniaxial tension. The theoretical modeling and exact solutions for hard-magnetic soft beams are expected to be useful in the analysis and design of soft materials and structures.


2017 ◽  
Vol 351 ◽  
pp. 437-454 ◽  
Author(s):  
Feifei Chen ◽  
Yiqiang Wang ◽  
Michael Yu Wang ◽  
Y.F. Zhang

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Wenhui Zhang ◽  
Yaoting Zhang

The local level set method (LLSM) is higher than the LSMs with global models in computational efficiency, because of the use of narrow-band model. The computational efficiency of the LLSM can be further increased by avoiding the reinitialization procedure by introducing a distance regularized equation (DRE). The numerical stability of the DRE can be ensured by a proposed conditionally stable difference scheme under reverse diffusion constraints. Nevertheless, the proposed method possesses no mechanism to nucleate new holes in the material domain for two-dimensional structures, so that a bidirectional evolutionary algorithm based on discrete level set functions is combined with the LLSM to replace the numerical process of hole nucleation. Numerical examples are given to show high computational efficiency and numerical stability of this algorithm for topology optimization.


Sign in / Sign up

Export Citation Format

Share Document