scholarly journals Extrinsic Contact Sensing with Relative-Motion Tracking from Distributed Tactile Measurements

Author(s):  
Daolin Ma ◽  
Siyuan Dong ◽  
Alberto Rodriguez
1993 ◽  
Vol 2 (4) ◽  
pp. 314-343 ◽  
Author(s):  
Ted Morris ◽  
Max Donath

One approach to tracking anatomical and robot joint motion consists of tracking the XYZ locations of multiple point targets that are attached to each of the moving segments and then computing the three translations and three orientation angles between adjoining segments. The complexity of such systems requires that we introduce a new conservative maximum error statistic to be used for evaluating the accuracy of 3D motion tracking systems. This paper addresses the various phenomena that contribute to measurement error when computing six degrees of freedom associated with the relative motion between the adjacent segments. The characteristics of these errors, common to many 3D motion tracking systems, were first determined by experimentation using one such system (MnSCAN). These and additional artifacts were then modeled in order to quantitatively evaluate their effects using the maximum error statistic. Based on these computer experiments, several relationships were identified that predict how each of these phenomena influences the predicted measurement of relative motion between bodies. These suggest where design emphasis should be placed in order to minimize the error in tracking the six degrees of freedom. The methodology and the conclusions based on these results can be applied to designing most six degree of freedom position and motion measurement systems.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Hamed Joodaki ◽  
Ann Bailey ◽  
David Lessley ◽  
James Funk ◽  
Chris Sherwood ◽  
...  

Approximately 1.6–3.8 million sports-related traumatic brain injuries occur each year in the U.S. Researchers track the head motion using a variety of techniques to study the head injury biomechanics. To understand how helmets provide head protection, quantification of the relative motion between the head and the helmet is necessary. The purpose of this study was to compare helmet and head kinematics and quantify the relative motion of helmet with respect to head during experimental representations of on-field American football impact scenarios. Seven helmet-to-helmet impact configurations were simulated by propelling helmeted crash test dummies into each other. Head and helmet kinematics were measured with instrumentation and an optical motion capture system. The analysis of results, from 10 ms prior to the helmet contact to 20 ms after the loss of helmet contact, showed that the helmets translated 12–41 mm and rotated up to 37 deg with respect to the head. The peak resultant linear acceleration of the helmet was about 2–5 times higher than the head. The peak resultant angular velocity of the helmet ranged from 37% less to 71% more than the head, depending on the impact conditions. The results of this study demonstrate that the kinematics of the head and the helmet are noticeably different and that the helmet rotates significantly with respect to the head during impacts. Therefore, capturing the helmet kinematics using a video motion tracking methodology is not sufficient to study the biomechanics of the head. Head motion must be measured independently of the helmet.


Author(s):  
Bridget Carragher ◽  
David A. Bluemke ◽  
Michael J. Potel ◽  
Robert Josephs

We have investigated the feasibility of restoring blurred electron micrographs. Two related problems have been considered; the restoration of images blurred as a result of relative motion between the specimen and the image plane, and the restoration of images which are rotationally blurred about an axis. Micrographs taken while the specimen is drifting result in images which are blurred in the direction of motion. An example of rotational blurring arises in micrographs of thin sections of helical particles viewed in cross section. The twist of the particle within the finite thickness of the section causes the image to appear rotationally blurred about the helical axis. As a result, structural details, particularly at large distances from the helical axis, will be obscured.


2010 ◽  
Vol 20 (2) ◽  
pp. 29-36
Author(s):  
Erin M. Wilson ◽  
Ignatius S. B. Nip

Abstract Although certain speech development milestones are readily observable, the developmental course of speech motor control is largely unknown. However, recent advances in facial motion tracking systems have been used to investigate articulator movements in children and the findings from these studies are being used to further our understanding of the physiologic basis of typical and disordered speech development. Physiologic work has revealed that the emergence of speech is highly dependent on the lack of flexibility in the early oromotor system. It also has been determined that the progression of speech motor development is non-linear, a finding that has motivated researchers to investigate how variables such as oromotor control, cognition, and linguistic factors affect speech development in the form of catalysts and constraints. Physiologic data are also being used to determine if non-speech oromotor behaviors play a role in the development of speech. This improved understanding of the physiology underlying speech, as well as the factors influencing its progression, helps inform our understanding of speech motor control in children with disordered speech and provide a framework for theory-driven therapeutic approaches to treatment.


2017 ◽  
Author(s):  
C Enzensberger ◽  
L Rostock ◽  
M Götte ◽  
A Wolter ◽  
J Herrmann ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document