Shape Optimization Design of Underwater Vehicle Based on Response Surface Model

Author(s):  
Zhang Haiyang ◽  
Gu Haitao ◽  
Lin Yang
2009 ◽  
Vol 419-420 ◽  
pp. 89-92
Author(s):  
Zhuo Yi Yang ◽  
Yong Jie Pang ◽  
Zai Bai Qin

Cylinder shell stiffened by rings is used commonly in submersibles, and structure strength should be verified in the initial design stage considering the thickness of the shell, the number of rings, the shape of ring section and so on. Based on the statistical techniques, a strategy for optimization design of pressure hull is proposed in this paper. Its central idea is that: firstly the design variables are chosen by referring criterion for structure strength, then the samples for analysis are created in the design space; secondly finite element models corresponding to the samples are built and analyzed; thirdly the approximations of these analysis are constructed using these samples and responses obtained by finite element model; finally optimization design result is obtained using response surface model. The result shows that this method that can improve the efficiency and achieve optimal intention has valuable reference information for engineering application.


Author(s):  
M.N. Ahmad ◽  
T. Sivanesan ◽  
A.S Mahmud

Automobile wheel is a key component of the automobile. The optimization design for aluminium alloy wheel was implemented using Design of Experiments (DOE) in this paper. On wheel, the parameters affecting the overall efficiency such as strength, stiffness and weight are selected, and simulation experiments are completed using Minitab software according to the Box-Behnken Design. The response surface model is obtained from the Response Surface Method (RSM) and then static analysis was done by using ANSYS for each design with different combination of parameters produced by response surface model. As a result, the optimal parameters of the wheel are determined by finding the minimum value of the response model. A shape of an optimized wheel is determined by the response surface model and validity is confirmed by analysing and comparing the characteristic of wheel with the baseline design. Lastly, transient thermal analysis of the optimized alloy wheel is aimed at evaluating the performance of alloy wheel of a car under static conditions specifically in hot weather


Author(s):  
Weilin Yi ◽  
Hongyan Huang ◽  
Wanjin Han

The paper describes a new optimization strategy for computationally expensive design optimization problems of turbomachinery, combined with design of experiment (DOE), response surface models (RSM), genetic algorithm (GA) and a 3-D Navier-Stokes solver. Data points for response evaluations were selected by Latin hypercube design (LHD) and 3-dimensional Navier-Stokes analysis was carried out at these sample points. The quadratic response surface model was used to approximate the relationships between the design variables and flow parameters. The genetic algorithm was applied to the response surface model to perform global optimization to obtain the optimum design. The above method was applied to the optimization design of NASA rotor37. The object was to maximize the adiabatic efficiency. An optimum leading edge line was found which produced a new 3-dimensional blade combined with sweep and composite bowing. As a result of this optimization, the adiabatic efficiency was successfully increased by 1.58%. It was found that the strategy of this paper provides a reliable design optimization method for turbomachinery blades at reasonable computing cost.


Sign in / Sign up

Export Citation Format

Share Document