A Novel Triple Layer Method To Hide Secret Image Using Steganography

Author(s):  
S. Nirenjena ◽  
M. Jayapriya
Author(s):  
Minakhi Pujari ◽  
Joachim Frank

In single-particle analysis of macromolecule images with the electron microscope, variations of projections are often observed that can be attributed to the changes of the particle’s orientation on the specimen grid (“rocking”). In the multivariate statistical analysis (MSA) of such projections, a single factor is often found that expresses a large portion of these variations. Successful angle calibration of this “rocking factor” would mean that correct angles can be assigned to a large number of particles, thus facilitating three-dimensional reconstruction.In a study to explore angle calibration in factor space, we used 40S ribosomal subunits, which are known to rock around an axis approximately coincident with their long axis. We analyzed micrographs of a field of these particles, taken with 20° tilt and without tilt, using the standard methods of alignment and MSA. The specimen was prepared with the double carbon-layer method, using uranyl acetate for negative staining. In the MSA analysis, the untilted-particle projections were used as active, the tilted-particle projections as inactive objects. Upon tilting, those particles whose rocking axes are parallel to the tilt axis will change their appearance in the same way as under the influence of rocking. Therefore, each vector, in factor space, joining a tilted and untilted projection of the same particle can be regarded as a local 20-degree calibration bar.


2020 ◽  
Author(s):  
Soumi Haldar ◽  
Achintya Kumar Dutta

We have presented a multi-layer implementation of the equation of motion coupled-cluster method for the electron affinity, based on local and pair natural orbitals. The method gives consistent accuracy for both localized and delocalized anionic states. It results in many fold speedup in computational timing as compared to the canonical and DLPNO based implementation of the EA-EOM-CCSD method. We have also developed an explicit fragment-based approach which can lead to even higher speed-up with little loss in accuracy. The multi-layer method can be used to treat the environmental effect of both bonded and non-bonded nature on the electron attachment process in large molecules.<br>


2013 ◽  
Vol 32 (3) ◽  
pp. 669-678
Author(s):  
Xiao-jing WANG ◽  
Jia-jia FANG ◽  
Hong-liang CAI ◽  
Yi-ding WANG

1999 ◽  
Author(s):  
S. J. Yakura ◽  
David Dietz ◽  
Andy Greenwood ◽  
Ernest Baca

Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Mohamed R. Elmarghany ◽  
Ahmed H. El-Shazly ◽  
Saeid Rajabzadeh ◽  
Mohamed S. Salem ◽  
Mahmoud A. Shouman ◽  
...  

In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes.


Author(s):  
Youchao Xie ◽  
Wenbin Shen ◽  
Jiancheng Han ◽  
Xiaole Deng

Author(s):  
Xuehu Yan ◽  
Lintao Liu ◽  
Longlong Li ◽  
Yuliang Lu

A secret image is split into   shares in the generation phase of secret image sharing (SIS) for a  threshold. In the recovery phase, the secret image is recovered when any   or more shares are collected, and each collected share is generally assumed to be lossless in conventional SIS during storage and transmission. However, noise will arise during real-world storage and transmission; thus, shares will experience data loss, which will also lead to data loss in the secret image being recovered. Secret image recovery in the case of lossy shares is an important issue that must be addressed in practice, which is the overall subject of this article. An SIS scheme that can recover the secret image from lossy shares is proposed in this article. First, robust SIS and its definition are introduced. Next, a robust SIS scheme for a  threshold without pixel expansion is proposed based on the Chinese remainder theorem (CRT) and error-correcting codes (ECC). By screening the random numbers, the share generation phase of the proposed robust SIS is designed to implement the error correction capability without increasing the share size. Particularly in the case of collecting noisy shares, our recovery method is to some degree robust to some noise types, such as least significant bit (LSB) noise, JPEG compression, and salt-and-pepper noise. A theoretical proof is presented, and experimental results are examined to evaluate the effectiveness of our proposed method.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Lu Wang ◽  
Bin Yan ◽  
Hong-Mei Yang ◽  
Jeng-Shyang Pan

Visual cryptography (VC) has found numerous applications in privacy protection, online transaction security, and voting security, etc. To counteract potential cheating attacks, Lin et al. proposed flip visual cryptography in 2010, where a second secret image can be revealed by stacking one share with a flipped version of another share. The second secret image can be designed as an additional verification mechanism. However, Lin’s scheme produces meaningless shares and is only applicable to binary secret images. It is interesting to explore whether it is possible to extend the flip VC to having cover images (i.e., extended VC) and these cover images are color images. This problem is challenging since too many restricting conditions need to be met. In this paper, we designed a flip VC for gray-scale and color cover images based on constraint error diffusion. We show that it is possible to meet all the constraints simultaneously. Compared with existing schemes, our scheme enjoys the following features: Color cover images, no computation needed for decoding, and no interference from cover image on the recovered secret image.


Sign in / Sign up

Export Citation Format

Share Document