Cognitive State Classification using Genetic Algorithm based Linear Collaborative Discriminant Regression

Author(s):  
K. O. Gupta ◽  
P. N. Chatur
2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Tian Lan ◽  
Deniz Erdogmus ◽  
Andre Adami ◽  
Santosh Mathan ◽  
Misha Pavel

We present an ambulatory cognitive state classification system to assess the subject's mental load based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog) system that aims to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson) at 2 difficulty levels (low/high) demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Ziming Yin ◽  
Yinhong Zhao ◽  
Xudong Lu ◽  
Huilong Duan

Neuropsychological testing is an effective means for the screening of Alzheimer’s disease. Multiple neuropsychological rating scales should be used together to get subjects’ comprehensive cognitive state due to the limitation of a single scale, but it is difficult to operate in primary clinical settings because of the inadequacy of time and qualified clinicians. Aiming at identifying AD’s stages more accurately and conveniently in screening, we proposed a computer-aided diagnosis approach based on critical items extracted from multiple neuropsychological scales. The proposed hybrid intelligent approach combines the strengths of rough sets, genetic algorithm, and Bayesian network. There are two stages: one is attributes reduction technique based on rough sets and genetic algorithm, which can find out the most discriminative items for AD diagnosis in scales; the other is uncertain reasoning technique based on Bayesian network, which can forecast the probability of suffering from AD. The experimental data set consists of 500 cases collected by a top hospital in China and each case is determined by the expert panel. The results showed that the proposed approach could not only reduce items drastically with the same classification precision, but also perform better on identifying different stages of AD comparing with other existing scales.


2007 ◽  
Author(s):  
Michael C. Dorneich ◽  
Santosh Mathan ◽  
Patricia May Ververs ◽  
Stephen D. Whitlow

Author(s):  
Naveen Irtiza ◽  
Humera Farooq

Electroencephalographic (EEG) signals are usually comprised of high-dimensional feature space. This work aims to assess the effect of reducing the number of features extracted from EEG recordings. A methodology is proposed that combines brain imaging and machine learning techniques to predict the cognitive state of the subjects whether they are feeling themselves in a safe or dangerous environment. The changes in the brain state are correlated with power modulations of oscillatory rhythms in recorded EEG signals called ERD / ERS (Event-related De-synchronization / Synchronization). In order to determine the optimized number of features, Genetic Algorithm (GA) will be used. GA has played instrumental role in solving optimization problems from diverse fields. In various studies and researches for Cognitive Man-Machine Communication, the algorithm has been used as an effective method to extract an optimal set of features.


2019 ◽  
Author(s):  
Greta Tuckute ◽  
Sofie Therese Hansen ◽  
Troels Wesenberg Kjaer ◽  
Lars Kai Hansen

AbstractNeurofeedback based on real-time brain imaging allows for targeted training of brain activity with demonstrated clinical applications. A rapid technical development of electroen-cephalography (EEG)-based systems and an increasing interest in cognitive training has lead to a call for accessible and adaptable software frameworks. Here, we present and outline the core components of a novel open-source neurofeedback framework based on scalp EEG signals for real-time neuroimaging, state classification and closed-loop feedback.The software framework includes real-time signal preprocessing, adaptive artifact rejection, and cognitive state classification from scalp EEG. The framework is implemented using exclusively Python source code to allow for diverse functionality, high modularity, and easy extendibility of software development depending on the experimenter’s needs.As a proof of concept, we demonstrate the functionality of our new software framework by implementing an attention training paradigm using a consumer-grade, dry-electrode EEG system. Twenty-two participants were trained on a single neurofeedback session with behavioral pre- and post-training sessions within three consecutive days. We demonstrate a mean decoding error rate of 34.3% (chance=50%) of subjective attentional states. Hence, cognitive states were decoded in real-time by continuously updating classification models on recently recorded EEG data without the need for any EEG recordings prior to the neurofeedback session.The proposed software framework allows a wide range of users to actively engage in the development of novel neurofeedback tools to accelerate improvements in neurofeedback as a translational and therapeutic tool.


Sign in / Sign up

Export Citation Format

Share Document