scholarly journals Channel Selection and Feature Projection for Cognitive Load Estimation Using Ambulatory EEG

2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Tian Lan ◽  
Deniz Erdogmus ◽  
Andre Adami ◽  
Santosh Mathan ◽  
Misha Pavel

We present an ambulatory cognitive state classification system to assess the subject's mental load based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog) system that aims to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson) at 2 difficulty levels (low/high) demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2338
Author(s):  
Júlio Medeiros ◽  
Ricardo Couceiro ◽  
Gonçalo Duarte ◽  
João Durães ◽  
João Castelhano ◽  
...  

An emergent research area in software engineering and software reliability is the use of wearable biosensors to monitor the cognitive state of software developers during software development tasks. The goal is to gather physiologic manifestations that can be linked to error-prone scenarios related to programmers’ cognitive states. In this paper we investigate whether electroencephalography (EEG) can be applied to accurately identify programmers’ cognitive load associated with the comprehension of code with different complexity levels. Therefore, a controlled experiment involving 26 programmers was carried. We found that features related to Theta, Alpha, and Beta brain waves have the highest discriminative power, allowing the identification of code lines and demanding higher mental effort. The EEG results reveal evidence of mental effort saturation as code complexity increases. Conversely, the classic software complexity metrics do not accurately represent the mental effort involved in code comprehension. Finally, EEG is proposed as a reference, in particular, the combination of EEG with eye tracking information allows for an accurate identification of code lines that correspond to peaks of cognitive load, providing a reference to help in the future evaluation of the space and time accuracy of programmers’ cognitive state monitored using wearable devices compatible with software development activities.


2020 ◽  
pp. 1-10
Author(s):  
Deepak K. Sarpal ◽  
Goda Tarcijonas ◽  
Finnegan J. Calabro ◽  
William Foran ◽  
Gretchen L. Haas ◽  
...  

Abstract Background Cognitive impairments, which contribute to the profound functional deficits observed in psychotic disorders, have found to be associated with abnormalities in trial-level cognitive control. However, neural tasks operate within the context of sustained cognitive states, which can be assessed with ‘background connectivity’ following the removal of task effects. To date, little is known about the integrity of brain processes supporting the maintenance of a cognitive state in individuals with psychotic disorders. Thus, here we examine background connectivity during executive processing in a cohort of participants with first-episode psychosis (FEP). Methods The following fMRI study examined background connectivity of the dorsolateral prefrontal cortex (DLPFC), during working memory engagement in a group of 43 patients with FEP, relative to 35 healthy controls (HC). Findings were also examined in relation to measures of executive function. Results The FEP group relative to HC showed significantly lower background DLPFC connectivity with bilateral superior parietal lobule (SPL) and left inferior parietal lobule. Background connectivity between DLPFC and SPL was also positively associated with overall cognition across all subjects and in our FEP group. In comparison, resting-state frontoparietal connectivity did not differ between groups and was not significantly associated with overall cognition, suggesting that psychosis-related alterations in executive networks only emerged during states of goal-oriented behavior. Conclusions These results provide novel evidence indicating while frontoparietal connectivity at rest appears intact in psychosis, when engaged during a cognitive state, it is impaired possibly undermining cognitive control capacities in FEP.


2021 ◽  
Vol 26 ◽  
pp. 155-164
Author(s):  
Kisor Kumar Chakrabarti ◽  

One approaching a thing from a distance may perceive it as existent, then as a substance, then as a tree and, finally, as a fig tree. Thus, the same fig tree can be the object of all these different perceptions. This shows, Udayana argues, that difference in cognitive states does not necessarily prove that their objects are different. This argument is in response to the Buddhist claim that since perceptual cognitive states and non-perceptual cognitive states are different, their respective objects are also different; unique particulars (svalakSaNa) that alone are real, are grasped in perception; general features (saamaanyalakSaNa) that are not real are grasped in non-perceptual cognitive states. The Buddhist objects: when the same thing appears to be the object of different cognitive states, only that cognitive state which leads to useful result is reliable. Udayana replies: More than one cognitive state in the above situation may lead to useful result; it is not justified to accept only one of them as reliable and reject the others. The Buddhist objects again: perceptual awareness is direct but non-perceptual awareness is indirect: hence their objects are different. Udayana replies: The same thing may be perceived when there is sensory connection with it and then inferred from an invariably connected sign when there is no sensory connection. Thus, the same thing may be the object of both direct and indirect cognitive states depending on different causal conditions.


2021 ◽  
Vol 6 ◽  
Author(s):  
John Fitzgerald Ehrich ◽  
Steven J. Howard ◽  
Sahar Bokosmaty ◽  
Stuart Woodcock

The accurate measurement of the cognitive load a learner encounters in a given task is critical to the understanding and application of Cognitive Load Theory (CLT). However, as a covert psychological construct, cognitive load represents a challenging measurement issue. To date, this challenge has been met mostly by subjective self-reports of cognitive load experienced in a learning situation. In this paper, we find that a valid and reliable index of cognitive load can be obtained through item response modeling of student performance. Specifically, estimates derived from item response modeling of relative difficulty (i.e., the difference between item difficulty and person ability locations) can function as a linear measure that combines the key components of cognitive load (i.e., mental load, mental effort, and performance). This index of cognitive load (relative difficulty) was tested for criterion (concurrent) validity in Year 2 learners (N = 91) performance on standardized educational numeracy and literacy assessments. Learners’ working memory (WM) capacity significantly predicted our proposed cognitive load (relative difficulty) index across both numeracy and literacy domains. That is, higher levels of WM were related to lower levels of cognitive load (relative difficulty), in line with fundamental predictions of CLT. These results illustrate the validity, utility and potential of this objective item response modeling approach to capturing individual differences in cognitive load across discrete learning tasks.


2017 ◽  
Author(s):  
Gary Lupyan

Attending is a cognitive process that incorporates a person’s knowledge, goals, and expectations. What we perceive when we attend to one thing is different from what we perceive when we attend to something else. Yet, it is often argued that attentional effects do not count as evidence that perception is influenced by cognition. I investigate two arguments often given to justify excluding attention. The first is arguing that attention is a post-perceptual process reflecting selection between fully constructed perceptual representations. The second is arguing that attention as a pre-perceptual process that simply changes the input to encapsulated perceptual systems. Both of these arguments are highly problematic. Although some attentional effects can indeed be construed as post-perceptual, others operate by changing perceptual content across the entire visual hierarchy. Although there is a natural analogy between spatial attention and a change of input, the analogy falls apart when we consider other forms of attention. After dispelling these arguments, I make a case for thinking of attention not as a confound, but as one of the mechanisms by which cognitive states affect perception by going through cases in which the same or similar visual inputs are perceived differently depending on the observer’s cognitive state, and instances where cuing an observer using language affects what one sees. Lastly, I provide two compelling counter-examples to the critique that although cognitive influences on perception can be demonstrated in the laboratory, it is impossible to really experience them for oneself in a phenomenologically compelling way. Taken together, the current evidence strongly supports the thesis that what we know routinely influences what we see, that the same sensory input can be perceived differently depending on the current cognitive state of the viewer, and that phenomenologically salient demonstrations are possible if certain conditions are met.


Author(s):  
Amy S. McDonnell ◽  
Trent G. Simmons ◽  
Gus G. Erickson ◽  
Monika Lohani ◽  
Joel M. Cooper ◽  
...  

Objective This research explores the effect of partial vehicle automation on neural indices of mental workload and visual engagement during on-road driving. Background There is concern that the introduction of automated technology in vehicles may lead to low driver stimulation and subsequent disengagement from the driving environment. Simulator-based studies have examined the effect of automation on a driver’s cognitive state, but it is unknown how the conclusions translate to on-road driving. Electroencephalographic (EEG) measures of frontal theta and parietal alpha can provide insight into a driver’s mental workload and visual engagement while driving under various conditions. Method EEG was recorded from 71 participants while driving on the roadway. We examined two age cohorts, on two different highway configurations, in four different vehicles, with partial vehicle automation both engaged and disengaged. Results Analysis of frontal theta and parietal alpha power revealed that there was no change in mental workload or visual engagement when driving manually compared with driving under partial vehicle automation. Conclusion Drivers new to the technology remained engaged with the driving environment when operating under partial vehicle automation. These findings suggest that the concern surrounding driver disengagement under vehicle automation may need to be tempered, at least for drivers new to the experience. Application These findings expand our understanding of the effects of partial vehicle automation on drivers’ cognitive states.


Sign in / Sign up

Export Citation Format

Share Document