Machine Learning-Based Detection of Open Source License Exceptions

Author(s):  
Christopher Vendome ◽  
Mario Linares-Vasquez ◽  
Gabriele Bavota ◽  
Massimiliano Di Penta ◽  
Daniel German ◽  
...  
Author(s):  
Wei Hao Khoong

In this paper, we introduce deboost, a Python library devoted to weighted distance ensembling of predictions for regression and classification tasks. Its backbone resides on the scikit-learn library for default models and data preprocessing functions. It offers flexible choices of models for the ensemble as long as they contain the predict method, like the models available from scikit-learn. deboost is released under the MIT open-source license and can be downloaded from the Python Package Index (PyPI) at https://pypi.org/project/deboost. The source scripts are also available on a GitHub repository at https://github.com/weihao94/DEBoost.


2020 ◽  
Vol 53 (5) ◽  
pp. 704-709
Author(s):  
Yan Liu ◽  
Zhijing Ling ◽  
Boyu Huo ◽  
Boqian Wang ◽  
Tianen Chen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1804 (1) ◽  
pp. 012133
Author(s):  
Mahmood Shakir Hammoodi ◽  
Hasanain Ali Al Essa ◽  
Wial Abbas Hanon

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3691
Author(s):  
Ciprian Orhei ◽  
Silviu Vert ◽  
Muguras Mocofan ◽  
Radu Vasiu

Computer Vision is a cross-research field with the main purpose of understanding the surrounding environment as closely as possible to human perception. The image processing systems is continuously growing and expanding into more complex systems, usually tailored to the certain needs or applications it may serve. To better serve this purpose, research on the architecture and design of such systems is also important. We present the End-to-End Computer Vision Framework, an open-source solution that aims to support researchers and teachers within the image processing vast field. The framework has incorporated Computer Vision features and Machine Learning models that researchers can use. In the continuous need to add new Computer Vision algorithms for a day-to-day research activity, our proposed framework has an advantage given by the configurable and scalar architecture. Even if the main focus of the framework is on the Computer Vision processing pipeline, the framework offers solutions to incorporate even more complex activities, such as training Machine Learning models. EECVF aims to become a useful tool for learning activities in the Computer Vision field, as it allows the learner and the teacher to handle only the topics at hand, and not the interconnection necessary for visual processing flow.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206409 ◽  
Author(s):  
Stephen Solis-Reyes ◽  
Mariano Avino ◽  
Art Poon ◽  
Lila Kari

2021 ◽  
Author(s):  
Tuomo Kalliokoski

The software macHine leArning booSTed dockiNg (HASTEN) was developed to accelerate<br>structure-based virtual screening using machine learning models. It has been validated using<br>datasets both from literature (12 datasets, each containing three million molecules docked<br>with FRED) and in-house sources (one dataset of four million compounds docked with<br>Glide). HASTEN showed reasonable performance by having the mean recall value of 0.78 of<br>the top one percent scoring molecules after docking 10 % of the dataset for the literature data,<br>whereas excellent recall value of 0.95 was achieved for the in-house data. The program can be<br>used with any docking- and machine learning methodology, and is freely available from<br>https://github.com/TuomoKalliokoski/HASTEN.


Sign in / Sign up

Export Citation Format

Share Document