Remote Sensing Image Aircraft Detection Based on Feature Fusion across Deep Learning Framework

Author(s):  
Wanjun Wei ◽  
Jiuwen Zhang ◽  
Chengyu Xu
Author(s):  
M. Cao ◽  
H. Ji ◽  
Z. Gao ◽  
T. Mei

Abstract. Vehicle detection in remote sensing image has been attracting remarkable attention over past years for its applications in traffic, security, military, and surveillance fields. Due to the stunning success of deep learning techniques in object detection community, we consider to utilize CNNs for vehicle detection task in remote sensing image. Specifically, we take advantage of deep residual network, multi-scale feature fusion, hard example mining and homography augmentation to realize vehicle detection, which almost integrates all the advanced techniques in deep learning community. Furthermore, we simultaneously address super-resolution (SR) and detection problems of low-resolution (LR) image in an end-to-end manner. In consideration of the absence of paired low-/highresolution data which are generally time-consuming and cumbersome to collect, we leverage generative adversarial network (GAN) for unsupervised SR. Detection loss is back-propagated to SR generator to boost detection performance. We conduct experiments on representative benchmark datasets and demonstrate that our model yields significant improvements over state-of-the-art methods in deep learning and remote sensing areas.


2020 ◽  
Vol 87 ◽  
pp. 103333 ◽  
Author(s):  
Qiangwei Liu ◽  
Xiuqiao Xiang ◽  
Yuanfang Wang ◽  
Zhongwen Luo ◽  
Fang Fang

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Liming Zhou ◽  
Haoxin Yan ◽  
Chang Zheng ◽  
Xiaohan Rao ◽  
Yahui Li ◽  
...  

Aircraft, as one of the indispensable transport tools, plays an important role in military activities. Therefore, it is a significant task to locate the aircrafts in the remote sensing images. However, the current object detection methods cause a series of problems when applied to the aircraft detection for the remote sensing image, for instance, the problems of low rate of detection accuracy and high rate of missed detection. To address the problems of low rate of detection accuracy and high rate of missed detection, an object detection method for remote sensing image based on bidirectional and dense feature fusion is proposed to detect aircraft targets in sophisticated environments. On the fundamental of the YOLOv3 detection framework, this method adds a feature fusion module to enrich the details of the feature map by mixing the shallow features with the deep features together. Experimental results on the RSOD-DataSet and NWPU-DataSet indicate that the new method raised in the article is capable of improving the problems of low rate of detection accuracy and high rate of missed detection. Meanwhile, the AP for the aircraft increases by 1.57% compared with YOLOv3.


2018 ◽  
Vol 145 ◽  
pp. 148-164 ◽  
Author(s):  
Shuang Wang ◽  
Dou Quan ◽  
Xuefeng Liang ◽  
Mengdan Ning ◽  
Yanhe Guo ◽  
...  

Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


Sign in / Sign up

Export Citation Format

Share Document