Current distortion around grid zero-volt crossing and open-loop power factor in flyback AC module with a pseudo-DC link

Author(s):  
Edwin Fonkwe ◽  
James Kirtley
Keyword(s):  
2014 ◽  
Vol 15 (4) ◽  
pp. 367-375
Author(s):  
C. Ismayil ◽  
M. Nanda Kumar

Abstract In this paper, the harmonic analysis of inverter voltage of a slip energy recovery drive (SERD) is carried out and proposes a novel approach to improve the supply side power factor of the overall drive system. The proposed model is a self-commutated SERD using IGBT inverter, and a modulation technique called selective harmonic elimination (SHE) is applied to improve the supply side power factor. The complete solutions for switching patterns to eliminate the fifth and seventh harmonics are developed using genetic algorithm. SHE method is simulated in semi-open-loop mode, and the power factor of the drive is compared with conventional line commutated thyristor inverter-based SERD. Simulations have been carried out in Matlab/Simulink environment to predetermine the performance of the drive, and results show a significant improvement in the input power factor of the drive.


Author(s):  
Shadman Sakib ◽  
Ahmed Jawad Kabir ◽  
Shajal Khansur ◽  
Jewel Rana

In this paper, analysis and design of a novel single phase AC-DC CUK converter circuit has been proposed where Power Factor Correction (PFC) controller scheme has been used in order to obtain better performance than conventional converters. Closed loop technique is applied to the bridgeless converter in order to achieve low input current, Total Harmonic Distortion (THD) at input AC mains along with near unity power factor. Performance comparison between open loop and closed loop of the proposed converter is made without filtering. The problems arise with open loop is sufficiently minimized by using power factor correction controller. The performance comparison between proposed and conventional CUK AC-DC converter operating in Continuous Conduction Mode (CCM) is made based on circuit simulations using PSIM softwere.


Author(s):  
Faouzi Armi ◽  
Lazhar Manai ◽  
Mongi Besbes

In this article, Newton–Raphson optimization-based selective harmonic elimination pulse width modulation is investigated for open-loop control of flying capacitor multilevel inverter. Proposed control strategy has allowed giving up current and voltage measurement instrumentations and sensors used in case of closed loop–based control. Proposed control strategy generates accurate switching angles, capable to balance flying capacitor voltage and eliminate lower order harmonics considering load power factor variation. Algorithm performances are verified by simulation and experiments, and obtained results prove that proposed technique does effectively eliminate specific harmonics and balance capacitor voltages while getting inverter output voltage with desired number of levels.


Sign in / Sign up

Export Citation Format

Share Document