A Time-Domain Channel Impulse Response Estimation Method for an OFDM Sounding System

Author(s):  
Asif Iqbal ◽  
Varun Jeoti ◽  
Micheal Drieberg ◽  
Wong Peng Wen
2015 ◽  
Vol 738-739 ◽  
pp. 1111-1114
Author(s):  
Sheng Bo Huang ◽  
Yu Cang Wen ◽  
Wen Ye ◽  
Tong Liang Fan

OFDM usually incorporates pilot tones in the frequency domain (FD) or training symbols in the time-domain (TD) to facilitate channel estimation algorithms. TD channel estimation becomes more attractive in quasi-static channels because channel estimation scheme will optimize the spectral efficiency by re-using the training symbols designated for FD channel estimation. A channel estimation method based on time domain averaging algorithm is proposed. Due to the principle of centralized energy in time domain, the effective channel impulse response length can be detected by setting of threshold for the estimated channel impulse response length. Computer simulation demonstrates the performance of the proposed algorithms in terms of bit error rate performance.


2014 ◽  
Vol 602-605 ◽  
pp. 2871-2877
Author(s):  
Ying Xin Yu ◽  
Gang Wang

Considering the physical layer specification of the IEEE802.11 protocol as background, a novel LSE (least square estimation) algorithm based on power-delay profile of wireless channel is proposed. In multi-path time-variant channel, receiver carries out a primary MMSE estimation using training symbols and pilots of OFDM symbol firstly. Then the channel impulse response is obtained from frequency response estimated by MMSE. Finally, LSE algorithm is applied to revise the channel impulse response according to the power-delay profile. The LSE algorithm can reduce the noise level of MMSE estimation in time-domain which is equivalent to increasing the SNR to the output of 2-D wiener filter. Simulation results confirm that the proposed LSE algorithm gains a better performance in contrast to MMSE algorithm. As the Doppler frequency shift increases, LSE outperforms more significantly than MMSE algorithm.


Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


2016 ◽  
Vol 24 (6) ◽  
pp. 1086-1100
Author(s):  
Utku Boz ◽  
Ipek Basdogan

In adaptive control applications for noise and vibration, finite ımpulse response (FIR) or ınfinite ımpulse response (IIR) filter structures are used for online adaptation of the controller parameters. IIR filters offer the advantage of representing dynamics of the controller with smaller number of filter parameters than with FIR filters. However, the possibility of instability and convergence to suboptimal solutions are the main drawbacks of such controllers. An IIR filtering-based Steiglitz–McBride (SM) algorithm offers nearly-optimal solutions. However, real-time implementation of the SM algorithm has never been explored and application of the algorithm is limited to numerical studies for active vibration control. Furthermore, the prefiltering procedure of the SM increases the computational complexity of the algorithm in comparison to other IIR filtering-based algorithms. Based on the lack of studies about the SM in the literature, an SM time-domain algorithm for AVC was implemented both numerically and experimentally in this study. A methodology that integrates frequency domain IIR filtering techniques with the classic SM time-domain algorithm is proposed to decrease the computational complexity. Results of the proposed approach are compared with the classical SM algorithm. Both SM and the proposed approach offer multimodal vibration suppression and it is possible to predict the performance of the controller via simulations. The proposed hybrid approach ensures similar vibration suppression performance compared to the classical SM and offers computational advantage as the number of control filter parameters increases.


2012 ◽  
Vol 11 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Dustin Maas ◽  
Mohammad H. Firooz ◽  
Junxing Zhang ◽  
Neal Patwari ◽  
Sneha K. Kasera

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. WB137-WB148 ◽  
Author(s):  
Michael W. Asten ◽  
Andrew C. Duncan

The use of simple models for decay of conductive targets under conductive overburden and for the decay of magnetically permeable conductive steel objects allows quantitative consideration of the advantages of the use of magnetic-field detectors in time-domain electromagnetic (TEM) measurements, or more generally, the advantage of step response over impulse response TEM systems. We identified eight advantages of the step response versus impulse-response systems. The first two advantages relate to the inductive limit (early time) decay behavior, in which a target response amplitude is largely dependent on geometrical rather than conductivity parameters. Five further advantages occur when measuring response of a target in a conductive host or under conductive overburden; the maximum target-to-overburden response occurs 25%–30% earlier in time, the earliest target detection time occurs a factor 2–4 earlier, and the amplitude advantage of target-to-overburden response is a factor in the range of 1–10 for the step versus impulse-response systems, respectively. These advantages agree quantitatively with field observations on a chalcopyrite orebody under conductive cover. We used a model response for a conductive permeable sphere to derive mathematically consistent approximations for the power-law and exponential decay behaviors for step and impulse responses of metal objects, from which the onset of late-time exponential decay of EM responses of unexploded ordnance occurs about a factor of two earlier in time for the step response. This earlier-time transition together with the higher signal-to-noise ratio available from the step-response measurement makes measurement of the fundamental time-constant of unexploded ordnance (UXO) possible for medium and large UXO where the time constant is in the range of tens of milliseconds. This time-constant thus becomes accessible as an additional parameter for UXO characterization and discrimination.


Sign in / Sign up

Export Citation Format

Share Document