The quantitative advantages of using B-field sensors in time-domain EM measurement for mineral exploration and unexploded ordnance search

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. WB137-WB148 ◽  
Author(s):  
Michael W. Asten ◽  
Andrew C. Duncan

The use of simple models for decay of conductive targets under conductive overburden and for the decay of magnetically permeable conductive steel objects allows quantitative consideration of the advantages of the use of magnetic-field detectors in time-domain electromagnetic (TEM) measurements, or more generally, the advantage of step response over impulse response TEM systems. We identified eight advantages of the step response versus impulse-response systems. The first two advantages relate to the inductive limit (early time) decay behavior, in which a target response amplitude is largely dependent on geometrical rather than conductivity parameters. Five further advantages occur when measuring response of a target in a conductive host or under conductive overburden; the maximum target-to-overburden response occurs 25%–30% earlier in time, the earliest target detection time occurs a factor 2–4 earlier, and the amplitude advantage of target-to-overburden response is a factor in the range of 1–10 for the step versus impulse-response systems, respectively. These advantages agree quantitatively with field observations on a chalcopyrite orebody under conductive cover. We used a model response for a conductive permeable sphere to derive mathematically consistent approximations for the power-law and exponential decay behaviors for step and impulse responses of metal objects, from which the onset of late-time exponential decay of EM responses of unexploded ordnance occurs about a factor of two earlier in time for the step response. This earlier-time transition together with the higher signal-to-noise ratio available from the step-response measurement makes measurement of the fundamental time-constant of unexploded ordnance (UXO) possible for medium and large UXO where the time constant is in the range of tens of milliseconds. This time-constant thus becomes accessible as an additional parameter for UXO characterization and discrimination.

Geophysics ◽  
1984 ◽  
Vol 49 (7) ◽  
pp. 1010-1026 ◽  
Author(s):  
G. F. West ◽  
J. C. Macnae ◽  
Y. Lamontagne

A wide‐band time‐domain EM system, known as UTEM, which uses a large fixed transmitter and a moving receiver has been developed and used extensively in a variety of geologic environments. The essential characteristics that distinguish it from other systems are that its system function closely approximates a stepfunction response measurement and that it can measure both electric and magnetic fields. Measurement of step rather than impulse response simplifies interpretation of data amplitudes, and improves the detection of good conductors in the presence of poorer ones. Measurement of electric fields provides information about lateral conductivity contrasts somewhat similar to that obtained by the gradient array resistivity method.


2019 ◽  
Vol 804 ◽  
pp. 17-21
Author(s):  
Hitoshi Kino ◽  
Akihiro Kiyota ◽  
Nobuyoshi Miyamoto ◽  
Takumi Inadomi ◽  
Tomonori Kato ◽  
...  

A soft actuator is expected to be applied in the next generation of robotics. This study focuses on soft gel actuators hybridized with nanosheet liquid crystals. The resulting soft actuator has a highly hydrophilic property, and is suitable for underwater use. When the gel in water is heated to more than the transition temperature, the gel contracts; conversely, it swells when it is cooled. This gel actuator remarkably has an anisotropic contraction characteristic because the orientation of the nanosheets is uniformly arranged. However, little is known about its dynamic characteristics of the thermal contraction. As a basic analysis, this paper investigates the heating step response through experiments, and reveals the variation of the time constant against the dimensions.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. E385-E398 ◽  
Author(s):  
Yanju Ji ◽  
Yanqi Wu ◽  
Shanshan Guan ◽  
Xuejiao Zhao

Induced-polarization (IP) effects have a significant influence on transient electromagnetic (TEM) data, which commonly manifest a reversed sign. Polarization media usually have a very high economic value. To study the IP effects, a new method for modeling the time-domain electromagnetic signals of 3D dispersive materials is developed. Due to the fractional time derivatives, two main difficulties are needed to be conquered: the derivation of Cole-Cole model impulse response function and the discrete recursion of convolution in Ohm’s law. We use a frequency-domain rational approximation method and the linear programming technique to transfer the fractional order system into an integer order system. This method enables us to achieve a relatively simple and high-precision solution of the Cole-Cole model impulse response. A discrete recursion method for Ohm’s law convolution is proposed to realize an efficient numerical simulation of 3D polarization media by eliminating the prohibitive computing demands. Comparisons with published methods demonstrate the accuracy and efficiency of our algorithm. The characteristic time constant and chargeability have monotonic influences on the IP effects, whereas the frequency dependence indicates a nonmonotonic influence on the IP effects. The negative response is more significant when the frequency dependence is in the midrange. For a 3D low-resistivity chargeable body, a larger size reduces the decay rate of the induced field, which contributes to the obscuration of the polarization field. The middle-sized chargeable body can be detected under certain conditions: high chargeability, millisecond characteristic time constant, and middle frequency dependence. Small-sized chargeable bodies cannot be recognized at all by using the current forward-modeling method and instrument, which highlights the significance of precision improvement.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1095-1103 ◽  
Author(s):  
Richard S. Smith ◽  
Terry J. Lee

We define the nth moment of the transient electromagnetic impulse response as the definite integral with respect to time of the “quadrature” magnetic‐field impulse response weighted by time to the nth power. In this context, the quadrature response is defined as the full impulse response with the in‐phase component (i.e., the delta function component at zero time) removed. The low‐order moments are equivalent to familiar quantities: the zeroth moment (n = 0) is numerically equal to the frequency‐domain inductive limit, and the first moment is the resistive‐limit response. The higher order moments can be of particular benefit: successively they put greater emphasis on the late‐time data, and hence can bring out features in the data that are more conductive or deeper. An advantage of calculating moments (and hence the inductive and resistive limit) is that these data are not strongly dependent on any distortion of the waveform from an ideal impulse. Hence, it is not critical to deconvolve the data prior to estimating the moments. If a conductor has a single exponential decay, the nth moment of the decay is proportional to the nth power of the time constant of the exponential. Thus, it is relatively easy to estimate the time constant from the moments. For a conductive sphere model, the expressions for the moments are more complicated, but are still simpler than the full transient solution or the frequency‐domain solution. In a field example, the high‐order moments emphasize local highly conductive features, but also show the noise present in the late‐time data. A discrete feature on the profile evident in moments 3 through 10 has been modeled as a spherical conductor with its center at 90 m depth, a radius of 45 m, and a conductivity of 9.4 S/m.


Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


2016 ◽  
Vol 24 (6) ◽  
pp. 1086-1100
Author(s):  
Utku Boz ◽  
Ipek Basdogan

In adaptive control applications for noise and vibration, finite ımpulse response (FIR) or ınfinite ımpulse response (IIR) filter structures are used for online adaptation of the controller parameters. IIR filters offer the advantage of representing dynamics of the controller with smaller number of filter parameters than with FIR filters. However, the possibility of instability and convergence to suboptimal solutions are the main drawbacks of such controllers. An IIR filtering-based Steiglitz–McBride (SM) algorithm offers nearly-optimal solutions. However, real-time implementation of the SM algorithm has never been explored and application of the algorithm is limited to numerical studies for active vibration control. Furthermore, the prefiltering procedure of the SM increases the computational complexity of the algorithm in comparison to other IIR filtering-based algorithms. Based on the lack of studies about the SM in the literature, an SM time-domain algorithm for AVC was implemented both numerically and experimentally in this study. A methodology that integrates frequency domain IIR filtering techniques with the classic SM time-domain algorithm is proposed to decrease the computational complexity. Results of the proposed approach are compared with the classical SM algorithm. Both SM and the proposed approach offer multimodal vibration suppression and it is possible to predict the performance of the controller via simulations. The proposed hybrid approach ensures similar vibration suppression performance compared to the classical SM and offers computational advantage as the number of control filter parameters increases.


Sign in / Sign up

Export Citation Format

Share Document