Self-tuning sliding mode controller design for a class of nonlinear control systems

Author(s):  
Yao-Chu Hsueh ◽  
Shun-Feng Su ◽  
Wen-June Wang
1994 ◽  
Vol 116 (4) ◽  
pp. 659-667 ◽  
Author(s):  
Ssu-Hsin Yu ◽  
John J. Moskwa

Currently, advanced control systems implemented on production ground vehicles have the goal of promoting maneuverability and stability. With proper coordination of steering and braking action, these goals may be achieved even when road conditions are severe. This paper considers the effect of steering and wheel torques on the dynamics of vehicular systems. Through the input-output linearization technique, the advantages of four-wheel steering (4WS) system and independent torques control are clear from a mathematical point of view. A sliding mode controller is also designed to modify driver’s steering and braking commands to enhance maneuverability and safety. Simulation results show the maneuverability and safety are improved. Although the controller design is based on a four-wheel steering vehicle, the algorithm can also be applied to vehicles of different configurations with slight changes.


Author(s):  
Tadanari Taniguchi ◽  
◽  
Luka Eciolaza ◽  
Michio Sugeno ◽  

We propose the stabilization of nonlinear control systems approximated by Piecewise Bilinear (PB) models. The approximated model is fully parametric and a Look-Up-Table (LUT) represents its controller. Input-Output (I/O) feedback linearization is applied to stabilize PB control systems. We further propose PB modeling combined with conventional feedback linearization as a very powerful tool for analyzing and synthesizing nonlinear control systems. We also propose a method for designing robust stabilization controllers taking modeling error into consideration. Examples confirm the feasibility of our proposals.


Sign in / Sign up

Export Citation Format

Share Document