Optimal route planning with restrictions for car navigation systems

Author(s):  
Manoj Kanta Mainali ◽  
Shingo Mabu ◽  
Xianneng Li ◽  
Kotaro Hirasawa
2013 ◽  
Vol 712-715 ◽  
pp. 2680-2685
Author(s):  
Kyung Il Choe

The typical route planning of on-board car navigation systems (CNS) attempts to find the shortest route without considering users preferences and driving contexts. However it is more effective for a user to find the most preferred route rather than the shortest one. We propose a systems engineering approach for finding the most preferred route by considering and tracking the requirements of CNS route planning from the business point of view. Our approach consists of 4 baselines: customer baseline, system baseline component baseline, and design baseline. The architecture of a route planning engine is suggested according to the baselines.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 11
Author(s):  
Ren Wang ◽  
Mengchu Zhou ◽  
Kaizhou Gao ◽  
Ahmed Alabdulwahab ◽  
Muhyaddin J. Rawa

At present, most popular route navigation systems only use a few sensed or measured attributes to recommend a route. Yet the optimal route considered by drivers needs be based on multiple objectives and multiple attributes. As a result, these existing systems based on a single or few attributes may fail to meet such drivers’ needs. This work proposes a driver preference-based route planning (DPRP) model. It can recommend an optimal route by considering driver preference. We collect drivers’ preferences, and then provide a set of routes for their choice when they need. Next, we present an integrated algorithm to solve DPRP, which speeds up the search process for recommending the best routes. Its computation cost can be reduced by simplifying a road network and removing invalid sub-routes. Experimental results demonstrate its effectiveness.


2010 ◽  
Vol 6 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Manoj Kanta Mainali ◽  
Shingo Mabu ◽  
Shanqing Yu ◽  
Shinji Eto ◽  
Kotaro Hirasawa

Author(s):  
Irma-Delia Rojas-Cuevas ◽  
Santiago-Omar Caballero-Morales ◽  
Jose-Luis Martinez-Flores ◽  
Jose-Rafael Mendoza-Vazquez

Background: The Capacitated Vehicle Routing Problem (CVRP) is one of the most important transportation problems in logistics and supply chain management. The standard CVRP considers a fleet of vehicles with homogeneous capacity that depart from a warehouse, collect products from (or deliver products to) a set of customer locations (points) and return to the same warehouse. However, the operation of carrier companies and third-party transportation providers may follow a different network flow for collection and delivery. This may lead to non-optimal route planning through the use of the standard CVRP.Objective: To propose a model for carrier companies to obtain optimal route planning.Method: A Capacitated Vehicle Routing Problem for Carriers (CVRPfC) model is used to consider the distribution scenario where a fleet of vehicles depart from a vehicle storage depot, collect products from a set of customer points and deliver them to a specific warehouse before returning to the vehicle storage depot. Validation of the model’s functionality was performed with adapted CVRP test problems from the Vehicle Routing Problem LIBrary. Following this, an assessment of the model’s economic impact was performed and validated with data from a real carrier (real instance) with the previously described distribution scenario.Results: The route planning obtained through the CVRPfC model accurately described the network flow of the real instance and significantly reduced its distribution costs.Conclusion: The CVRPfC model can thus improve the competitiveness of the carriers by providing better fares to their customers, reducing their distribution costs in the process.


2020 ◽  
Vol 13 (1) ◽  
pp. 517-538 ◽  
Author(s):  
Pangwei Wang ◽  
Hui Deng ◽  
Juan Zhang ◽  
Mingfang Zhang

Advancement in the novel technology of connected vehicles has presented opportunities and challenges for smart urban transport and land use. To improve the capacity of urban transport and optimize land-use planning, a novel real-time regional route planning model based on vehicle to X communication (V2X) is presented in this paper. First, considering the traffic signal timing and phase information collected by V2X, road section resistance values are calculated dynamically based on real-time vehicular driving data. Second, according to the topology structure of the current regional road network, all predicted routes are listed based on the Dijkstra algorithm. Third, the predicted travel time of each alternative route is calculated, while the predicted route with the least travel time is selected as the optimal route. Finally, we design the test scenario with different traffic saturation levels and collect 150 sets of data to analyze the feasibility of the proposed method. The numerical results have shown that the average travel times calculated by the proposed optimal route are 8.97 seconds, 12.54 seconds, and 21.85 seconds, which are much shorter than the results of traditional navigation routes. This proposed model can be further applied to the whole urban traffic network and contribute to a greater transport and land-use efficiency in the future.


Author(s):  
Fredrik Svahn ◽  
Ola Henfridsson

A central feature of ubiquitous computing applications is their capability to automatically react on context changes so as to support users in their mobility. Such context awareness relies on models of specific use contexts, embedded in ubiquitous computing environments. However, since most such models are based merely on location and identity parameters, context-aware applications seldom cater for users’ situated knowledge and experience of specific contexts. This is a general user problem in well-known, but yet dynamic, user environments. Drawing on a sequential multimethod study of in-car navigation, this paper explores the role of situated knowledge in designing and using context-aware applications. This focus is motivated by the current lack of empirical investigations of context-aware applications in actual use settings. In-car navigation systems are a type of context-aware application that includes a set of contextual parameters for supporting route guidance in a volatile context. The paper outlines a number of theoretical and practical implications for context-aware application design and use.


Sign in / Sign up

Export Citation Format

Share Document