Fuzzy classifier with support vector learning for image retrieval using a specified object

Author(s):  
Guo-Cyuan Chen ◽  
Chia-Feng Juang
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sonia Bansal ◽  
Vineet Mehan

Abstract Objectives The key test in Content-Based Medical Image Retrieval (CBMIR) frameworks for MRI (Magnetic Resonance Imaging) pictures is the semantic hole between the low-level visual data caught by the MRI machine and the elevated level data seen by the human evaluator. Methods The conventional component extraction strategies centre just on low-level or significant level highlights and utilize some handmade highlights to diminish this hole. It is important to plan an element extraction structure to diminish this hole without utilizing handmade highlights by encoding/consolidating low-level and elevated level highlights. The Fleecy gathering is another packing technique, which is applied in plan depiction here and SVM (Support Vector Machine) is applied. Remembering the predefinition of bunching amount and enlistment cross-section is until now a significant theme, a new predefinition advance is extended in this paper, in like manner, and another CBMIR procedure is suggested and endorsed. It is essential to design a part extraction framework to diminish this opening without using painstakingly gathered features by encoding/joining low-level and critical level features. Results SVM and FCM (Fuzzy C Means) are applied to the power structures. Consequently, the incorporate vector contains all the objectives of the image. Recuperation of the image relies upon the detachment among request and database pictures called closeness measure. Conclusions Tests are performed on the 200 Image Database. Finally, exploratory results are evaluated by the audit and precision.


2009 ◽  
Vol 72 (10-12) ◽  
pp. 2464-2476 ◽  
Author(s):  
Chia-Feng Juang ◽  
Wen-Kai Sun ◽  
Guo-Cyuan Chen

Selection of feature extraction method is incredibly recondite task in Content Based Image Retrieval (CBIR). In this paper, CBIR is implemented using collaboration of color; texture and shape attribute to improve the feature discriminating property. The implementation is divided in to three steps such as preprocessing, features extraction, classification. We have proposed color histogram features for color feature extraction, Local Binary Pattern (LBP) for texture feature extraction, and Histogram of oriented gradients (HOG) for shape attribute extraction. For the classification support vector machine classifier is applied. Experimental results show that combination of all three features outperforms the individual feature or combination of two feature extraction techniques


2018 ◽  
Vol 45 (1) ◽  
pp. 117-135 ◽  
Author(s):  
Amna Sarwar ◽  
Zahid Mehmood ◽  
Tanzila Saba ◽  
Khurram Ashfaq Qazi ◽  
Ahmed Adnan ◽  
...  

The advancements in the multimedia technologies result in the growth of the image databases. To retrieve images from such image databases using visual attributes of the images is a challenging task due to the close visual appearance among the visual attributes of these images, which also introduces the issue of the semantic gap. In this article, we recommend a novel method established on the bag-of-words (BoW) model, which perform visual words integration of the local intensity order pattern (LIOP) feature and local binary pattern variance (LBPV) feature to reduce the issue of the semantic gap and enhance the performance of the content-based image retrieval (CBIR). The recommended method uses LIOP and LBPV features to build two smaller size visual vocabularies (one from each feature), which are integrated together to build a larger size of the visual vocabulary, which also contains complementary features of both descriptors. Because for efficient CBIR, the smaller size of the visual vocabulary improves the recall, while the bigger size of the visual vocabulary improves the precision or accuracy of the CBIR. The comparative analysis of the recommended method is performed on three image databases, namely, WANG-1K, WANG-1.5K and Holidays. The experimental analysis of the recommended method on these image databases proves its robust performance as compared with the recent CBIR methods.


2015 ◽  
Vol 6 (2) ◽  
pp. 25-40
Author(s):  
S. Sathiya Devi

In this paper, a simple image retrieval method incorporating relevance feedback based on the multiresolution enhanced orthogonal polynomials model is proposed. In the proposed method, the low level image features such as texture, shape and color are extracted from the reordered orthogonal polynomials model coefficients and linearly combined to form a multifeature set. Then the dimensionality of the multifeature set is reduced by utilizing multi objective Genetic Algorithm (GA) and multiclass binary Support Vector Machine (SVM). The obtained optimized multifeature set is used for image retrieval. In order to improve the retrieval accuracy and to bridge the semantic gap, a correlation based k-Nearest Neighbor (k-NN) method for relevance feedback is also proposed. In this method, an appropriate relevance score is computed for each image in the database based on relevant and non relevant set chosen by the user with correlation based k-NN method. The experiments are carried out with Corel and Caltech database images and the retrieval rates are computed. The proposed method with correlation based k-NN for relevance feedback gives an average retrieval rate of 94.67%.


Author(s):  
Zhao Hailong ◽  
Yi Junyan

In recent years, automatic ear recognition has become a popular research. Effective feature extraction is one of the most important steps in Content-based ear image retrieval applications. In this paper, the authors proposed a new vectors construction method for ear retrieval based on Block Discriminative Common Vector. According to this method, the ear image is divided into 16 blocks firstly and the features are extracted by applying DCV to the sub-images. Furthermore, Support Vector Machine is used as classifier to make decision. The experimental results show that the proposed method performs better than classical PCA+LDA, so it is an effective human ear recognition method.


Sign in / Sign up

Export Citation Format

Share Document