Hardware design and implementation of DOA estimation algorithms for spherical array antennas

Author(s):  
Yuelei Xie ◽  
Chengcheng Peng ◽  
Xing Jiang ◽  
Shan Ouyang
2015 ◽  
Vol 743 ◽  
pp. 471-473
Author(s):  
C.Z. Sun

To the conformal array antennas, the conventional DOA estimation algorithms will be affected by the Rayleigh limit. While, the MUSIC algorithm can solve this problem, it fully utilizes the orthogonality of noise subspace and signal subspace. It can achieve the DOA estimation through the spectrum peak search. The MUSIC algorithm is analyzed. Based on the cylindrical and conical array antenna, the algorithms are simulated. The simulation results show that the array arrangement mode can exert an important influence on the DOA estimation.


2016 ◽  
Author(s):  
Rui Guo ◽  
Yingxiao Zhao ◽  
Yue Zhang ◽  
Qianqiang Lin ◽  
Zengping Chen

2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hoi-Shun Lui ◽  
Hon Tat Hui

Performance evaluation of direction-of-arrival (DOA) estimation algorithms has continuously drawn significant attention in the past years. Most previous studies were conducted under the situation that antenna element separation is about half wavelength in order to avoid the appearance of grating lobes. On the other hand, recent developments in wireless communications have favoured the use of portable devices that utilize compact arrays with antenna element separations of less than half wavelength. Performance evaluation of DOA estimation algorithms employing compact arrays is an important and fundamental issue, but it has not been fully studied. In this paper, the performance of the matrix pencil method (MPM) that applies to DOA estimations is investigated through Monte Carlo simulations. The results show that closely spaced emitters can be accurately resolved using linear compact array with an array aperture as small as around half wavelength.


Sign in / Sign up

Export Citation Format

Share Document