Fuzzy Multi-kernel Approach in Intelligent Control of Energy Consumption in Smart Cities

Author(s):  
Miltiadis Alamaniotis ◽  
Lefteri Tsoukalas
Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3135 ◽  
Author(s):  
Carolina Del-Valle-Soto ◽  
Leonardo J. Valdivia ◽  
Ramiro Velázquez ◽  
Luis Rizo-Dominguez ◽  
Juan-Carlos López-Pimentel

Presently, the Internet of Things (IoT) concept involves a scattered collection of different multipurpose sensor networks that capture information, which is further processed and used in applications such as smart cities. These networks can send large amounts of information in a fairly efficient but insecure wireless environment. Energy consumption is a key aspect of sensor networks since most of the time, they are battery powered and placed in not easily accessible locations. Therefore, and regardless of the final application, wireless sensor networks require a careful energy consumption analysis that allows selection of the best operating protocol and energy optimization scheme. In this paper, a set of performance metrics is defined to objectively compare different kinds of protocols. Four of the most popular IoT protocols are selected: Zigbee, LoRa, Bluethooth, and WiFi. To test and compare their performance, multiple sensors are placed at different points of a university campus to create a network that can accurately simulate a smart city. Finally, the network is analyzed in detail using two different schemes: collaborative and cooperative.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6615
Author(s):  
Sam Preston ◽  
Muhammad Usman Mazhar ◽  
Richard Bull

Cities constitute three quarters of global energy consumption and the built environment is responsible for significant use of final energy (62%) and greenhouse gas emissions (55%). Energy has now become a strategic issue for local authorities (LAs) and can offer savings when budget cuts have threatened the provision of core services. Progressive LAs are exploring energy savings and carbon reduction opportunities as part of the sustainable and smart city agenda. This paper explores the role of citizens in smart city development as “buildings don’t use energy: people do”. Citizens have the potential to shape transitions towards smart and sustainable futures. This paper contributes to the growing evidence base of citizen engagement in low carbon smart cities by presenting novel insights and practical lessons on how citizen engagement can help in smart city development through co-creation with a focus on energy in the built environment. A case study of Nottingham in the UK, a leading smart city, is analysed using Arnstein’s Ladder of Citizen Participation. Nottingham City Council (NCC) has pledged to keep “citizens at the heart” of its plans. This paper discusses learnings from two EU funded Horizon 2020 projects, REMOURBAN (REgeneration MOdel for accelerating the smart URBAN transformation) and eTEACHER, both of which aimed to empower citizens to reduce energy consumption and co-create smart solutions. Although these two projects are diverse in approaches and contexts, what unites them is a focus on citizen engagement, both face to face and digital. REMOURBAN has seen a “whole house” approach to retrofit in vulnerable communities to improve liveability through energy efficiency. User interaction and co-creation in eTEACHER has provided specifications for technical design of an energy saving App for buildings. eTEACHER findings reflect users’ energy needs, understanding of control interfaces, motivations for change and own creative ideas. Citizens were made co-creators in eTEACHER from the beginning through regular communication. In REMOURBAN, citizens had a role in the procurement and bidding process to influence retrofit project proposals. Findings can help LAs to engage demographically diverse citizens across a variety of buildings and communities for low carbon smart city development.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zaoui Sayah ◽  
Okba Kazar ◽  
Brahim Lejdel ◽  
Abdelkader Laouid ◽  
Ahmed Ghenabzia

PurposeThis research paper aims at proposing a framework based on semantic integration in Big Data for saving energy in smart cities. The presented approach highlights the potential opportunities offered by Big Data and ontologies to reduce energy consumption in smart cities.Design/methodology/approachThis study provides an overview of semantics in Big Data and reviews various works that investigate energy saving in smart homes and cities. To reach this end, we propose an efficient architecture based on the cooperation between ontology, Big Data, and Multi-Agent Systems. Furthermore, the proposed approach shows the strength of these technologies to reduce energy consumption in smart cities.FindingsThrough this research, we seek to clarify and explain both the role of Multi-Agent System and ontology paradigms to improve systems interoperability. Indeed, it is useful to develop the proposed architecture based on Big Data. This study highlights the opportunities offered when they are combined together to provide a reliable system for saving energy in smart cities.Practical implicationsThe significant advancement of contemporary applications (smart cities, social networks, health care, IoT, etc.) requires a vast emergence of Big Data and semantics technologies in these fields. The obtained results provide an improved vision of energy-saving and environmental protection while keeping the inhabitants’ comfort.Originality/valueThis work is an efficient contribution that provides more comprehensive solutions to ontology integration in the Big Data environment. We have used all available data to reduce energy consumption, promote the change of inhabitant’s behavior, offer the required comfort, and implement an effective long-term energy policy in a smart and sustainable environment.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2015 ◽  
Author(s):  
Yang-Hsin Fan

Smart cities have hundreds of thousands of devices for tracking data on crime, the environment, and traffic (such as data collected at crossroads and on streets). This results in higher energy usage, as they are recording information persistently and simultaneously. Moreover, a single object tracking device, on a corner at an intersection for example has a limited scope of view, so more object tracking devices are added to broaden the view. As an increasing number of object tracking devices are constructed on streets, their efficient energy consumption becomes a significant issue. This work is concerned with decreasing the energy required to power these systems, and proposes energy-efficient clusters (EECs) of object tracking systems to achieve energy savings. First, we analyze a current object tracking system to establish an equivalent model. Second, we arrange the object tracking system in a cluster structure, which facilitates the evaluation of energy costs. Third, the energy consumption is assessed as either dynamic or static, which is a more accurate system for determining energy consumption. Fourth, we analyze all possible scenarios of the object’s location and the resulting energy consumption, and derive a number of formulas for the fast computation of energy consumption. Finally, the simulation results are reported. These results show the proposed EEC is an effective way to save energy, compared with the energy consumption benchmarks of current technology.


2014 ◽  
Vol 705 ◽  
pp. 350-354
Author(s):  
Zhen Hai Zhang ◽  
Wang Fa Zhou

Aiming at the energy waste problem in the modern hotel, hotel intelligent control system applied the PAC, internet communication, touch screen and on-scene communication technology, combined with human-based management mode. Practices substantiate that the system is safe and reliable, presenting good man-machine interactivity, reducing the energy consumption and costs, improving the market competitiveness of the hotel.Modern hotel should the clean production, energy resources’ saving, which is also an important step of environment protection that has been repeatedly asserted. Hotel is a typical representative as for energy consumption. It is estimated that the power consumption in a medium-sized (300 rooms) star hotel open for business, runs up to 500 to 700 KWH annually [1]. Therefore, it is of great significance to promote energy conservation in hotel. "Intelligent hotel energy conservation and environmental protection control system" is built around the concept of energy-saving and consumption reducing. Meanwhile, it surrounds three themes: utilization of new energy, energy efficiency, environment protection. It cherishes an comprehensive modern facility, which include central air-conditioning, boilers, water cycle, lights, intelligent garage and all the installation deserved. Its study is a prospective and practical one.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750108
Author(s):  
Yuzhuo Pan ◽  
Chen Lv ◽  
Shanhe Su ◽  
Jincan Chen

The paper presents the analysis, simulation, and experimental methods to eliminate acoustic resonance in high-frequency high-pressure sodium (HPS) lamps and integrate intelligent control strategies in the working device. Based on the pulse-width modulation (PWM) output generated by the microcontroller, the acoustic resonance in the high-frequency lamp can be successfully eliminated by modulating the high-frequency driving current via a low-frequency signal. Particularly, by implementing the pattern recognition, the control system enables the lamp to have the abilities of accurate timing, gradient dimming, automatic protection, and intellisense. The proposed model will provide useful information for designing intelligent lighting system towards smart cities.


Author(s):  
Mohamed Makkaoui

Quality of life, economic, knowledge and human capitals "˜development are the main challenges of the new wave of smart cities. Hybrid strategies of cost leadership and innovation need to be aligned mostly by highly deliberate university creative services. Physical, intellectual and social capitals are loosely coupled to better understanding of the urban fabric and norms of behavior. It requires the creation of applications enabling data collection and processing, web-based collaboration, and "real-time" mining of the collective intelligence of citizens. The Internet of Things (IoT) has been viewed as a promising technology with great potential for addressing many societal challenges, filling the gap in terms of citizen's sensitivity measurement. At the physical level of its ecosystem, buildings are responsible for about 40% of energy consumption in cities and more than 40% of greenhouse gas emissions. With recent products available today, energy consumption in buildings could be cut by up to 70 percent, but it requires an integrated and collective adaptive framework to show how buildings are operated, maintained and controlled with the support of IoT-based innovation and solutions. The number of new IoT protocols and applications has grown exponentially in recent years. However, IoT for smart cities needs accessible open data and open systems, so that industries and universities can develop new services and applications. The main aim is to develop energy efficient frameworks to improve energy efficiency by using innovative integrated IoT techniques. These techniques could integrate technologies from context-aware computing, context-dependent user expectation and profile and occupants' actions and behaviors. This paper tend to present in what extent a case of university-based smart city would invest in IoT as both strategy and process in order to enhance efficiency, innovative education and attractiveness for its current and future citizens.


Sign in / Sign up

Export Citation Format

Share Document