Equalization techniques for high-speed OFDM-based access systems using direct modulation and direct detection

Author(s):  
Nuno Sequeira Andre ◽  
Kai Habel ◽  
Hadrien Louchet ◽  
Andre Richter
Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rabiu Imam Sabitu ◽  
Nafizah Goriman Khan ◽  
Amin Malekmohammadi

AbstractThis report examines the performance of a high-speed MDM transmission system supporting four nondegenerate spatial modes at 10 Gb/s. The analysis adopts the NRZ modulation format to evaluate the system performance in terms of a minimum power required (PN) and the nonlinear threshold power (PTH) at a BER of 10−9. The receiver sensitivity, optical signal-to-noise ratio, and the maximum transmission distance were investigated using the direct detection by employing a multimode erbium-doped amplifier (MM-EDFA). It was found that by properly optimizing the MM-EDFA, the system performance can significantly be improved.


2016 ◽  
Vol 34 (8) ◽  
pp. 1683-1687 ◽  
Author(s):  
Amin Abbasi ◽  
Christos Spatharakis ◽  
Giannis Kanakis ◽  
Nuno Sequeira Andre ◽  
Hadrien Louchet ◽  
...  

2021 ◽  
Vol 18 (5) ◽  
pp. 221-244
Author(s):  
Tianchi Zhou ◽  
Yaxin Zhang ◽  
Bo Zhang ◽  
Hongxin Zeng ◽  
Zhiyong Tan ◽  
...  

2005 ◽  
Vol 17 (6) ◽  
pp. 1157-1159 ◽  
Author(s):  
M. Chacinski ◽  
M. Isaksson ◽  
R. Schatz
Keyword(s):  

2022 ◽  
pp. 127906
Author(s):  
Dongxu Lu ◽  
Bismark Boateng ◽  
Xian Zhou ◽  
Jiahao Huo ◽  
Fei Liu ◽  
...  
Keyword(s):  

Author(s):  
Juergen Hennig ◽  
Vesa Kiviniemi ◽  
Bruno Riemenschneider ◽  
Antonia Barghoorn ◽  
Burak Akin ◽  
...  

Abstract Objective This review article gives an account of the development of the MR-encephalography (MREG) method, which started as a mere ‘Gedankenexperiment’ in 2005 and gradually developed into a method for ultrafast measurement of physiological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concentric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which allows high acceleration in all three spatial dimensions. Methods The methodological section covers the basic sequence design as well as recent advances in image reconstruction including the targeted reconstruction, which allows real-time feedback applications, and—most recently—the time-domain principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data as a sparsifying transformation to improve reconstruction speed as well as quality. Applications Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic variability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns of cardiac and breathing related pulsatility. Discussion MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows considerably faster acquisition at the cost of reduced image quality and spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document