Inhibitory Effect of Inorganic Salts Residuals on Cellulase Kinetics in Biofuel Production from Lignocellulose Biomass

Author(s):  
Parita Mutrakulcharoen ◽  
Peerapong Pornwongthong ◽  
Kraipat Cheenkachorn ◽  
Prapakorn Tantayotai ◽  
Supacheree Roddecha ◽  
...  
2015 ◽  
Vol 17 (2) ◽  
pp. 926-936 ◽  
Author(s):  
Santi Chuetor ◽  
Rafael Luque ◽  
Cécile Barron ◽  
Abderrahim Solhy ◽  
Xavier Rouau ◽  
...  

Development of an innovative lignocellulosic biorefinery: milling combined with electrostatic (EF-T) and turbo (TF-T) fractionation technologies of lignocellulose biomass. EF-T and TF-T appear to be interesting technologies for biofuel production from waste feedstocks (e.g. rice straw) without any chemical or water inputs and minimizing waste generation.


Author(s):  
Vahideh Hasabi ◽  
Hossein Askari ◽  
Seyed Mehdi Alavi ◽  
Masood Soltani Najafabadi

Asiatic citrus canker caused by Xanthomonas citri subsp. citri is becoming a disease of high economic impact, affecting all types of important citrus crops. In this study, the potential antibacterial activity of ten organic and inorganic salts on X. citri subsp. citri and on citrus canker disease development was evaluated. Among the salt compounds, copper, iron and zinc inorganic salts particularly zinc (with the highest diameter of inhibition, the lowest MIC and MBC values and the highest bacterial growth inhibitory effect) had direct antibacterial activity and strongly reduced the development of canker disease and bacterial population of lime plants.


Author(s):  
Pichayanan Suwannabun ◽  
Kraipat Cheenkachorn ◽  
Methinee Prongjit ◽  
Atthasit Tawai ◽  
Malinee Sriariyanun

Author(s):  
Abdul Sattar Jatoi ◽  
Sikandar Ali Abbasi ◽  
Zubair Hashmi ◽  
Abdul Karim Shah ◽  
Muhammad Shahb Alam ◽  
...  

2021 ◽  
Vol 23 ◽  
pp. 33-38
Author(s):  
M. Karvatska ◽  
H. Lavrenyuk ◽  
V.-P. Parhomenko ◽  
B. Mykhalichko

Introduction. The search for chemicals that would have an effective fire extinguishing effect and the development of new fire extinguishers based on them is an extremely important problem of fire safety. It is known from the literature that new aqueous fire extinguishing agents (AFEAs) based on dissolved inorganic salts of transition metals, in particular, copper(II) chloride salts, have a rather efficient inhibitory effect on the hydrocarbon flame. However, the mechanism of inhibition of hydrocarbon combustion by this class of substances is not completely ascertained. However, it is reliable information about the processes that take place in the flame after the bringing in there of the aerosol of the mentioned AFEA will allow a systematic search for more optimal chemical composition of dissolved inorganic salts of d-metals. Purpose. The purpose of the work is to reveal the peculiarities of the interaction of concentrated aqueous solutions of copper(II) chloride salts with chemically active flame particles.Methods. Quantum chemical calculations of the chemical activity of radicals that appear in the flame and the physicochemical processes that occur in the flame after the bringing on there of AFEA aerosol.Results. The mechanism of a fire-extinguishing effect of aqueous solutions of inorganic copper(II) salts on a hydrocarbon flame is investigated by a calculation method. The sequence of stages of chemical processes that occur in the flame during the inhibiting combustion of hydrocarbons by AFEAs—concentrated solutions of CuCl2 and K2[CuCl4]—and the thermal effects of all reactions that accompany each of these stepwise transformations were ascertained. The stages of the interaction of gaseous Cu2Cl4 molecules with ×OH and ×H radicals in flame with the formation of first a radical-molecular complex and then a molecular complex are decisive in the process of inhibition and display the processes of interruption of chain reactions, i.e. deactivation of radicals in a flame.Conclusion. Thus, using the method of quantum chemical calculations the mechanism of inhibition of hydrocarbon combustion by copper(II) salts was offered. The mechanism of this process is considered to be associative, the decisive elementary act of which is carried out according to the scheme of addition of active radicals of a flame (×OH particles) to gaseous molecules Cu2Cl4 with the formation of radical-molecular complex [{Cu(×OH)Cl2}2] and with its subsequent deactivation by ×H particles.


2001 ◽  
Vol 120 (5) ◽  
pp. A176-A176
Author(s):  
P KOPPITZ ◽  
M STORR ◽  
D SAUR ◽  
M KURJAK ◽  
H ALLESCHER

Sign in / Sign up

Export Citation Format

Share Document