A Global Test Point Placement Algorithm of Combinational Circuits

Author(s):  
Dong Xiang ◽  
Daozheng Wei ◽  
Shisong Chen
VLSI Design ◽  
1998 ◽  
Vol 7 (4) ◽  
pp. 347-352
Author(s):  
C. P. Ravikumar ◽  
Nikhil Sharma

The layout of a circuit can influence the probability of occurrence of faults. In this paper, we develop algorithms that can take advantage of this fact to reduce the chances of hard-to-detect (HTD) faults from occurring. We primarily focus on line bridge faults in this paper. We define a bridge fault f as an HTD fault if an automatic test pattern generator fails to generate a test vector for f in a reasonable amount of CPU-time. It is common practice to drop such HTD faults from consideration during test generation. The chip fault coverage achieved by a test set is poor if the fault set consists of many HTD faults. We can combat this problem by avoiding altogether, or by reducing the probability of, the occurrence of HTD faults. In this paper, we consider hard-to-detect bridging faults and show how module placement rules can be derived to reduce the probability of these faults. A genetic placement algorithm that optimizes area while respecting these rules is presented. The placement algorithm has been implemented for standard-cell layout style on a SUN/SPARC and tested against several sample circuits.


1974 ◽  
Vol C-23 (7) ◽  
pp. 727-735 ◽  
Author(s):  
J.P. Hayes ◽  
A.D. Friedman

2014 ◽  
Author(s):  
Blaine Landis ◽  
Paul Piff ◽  
Ilmo van der Lowe ◽  
Youyou Wu ◽  
Emiliana Simon-Thomas ◽  
...  
Keyword(s):  

2008 ◽  
Vol 28 (S 01) ◽  
pp. S61-S66 ◽  
Author(s):  
G. Cvirn ◽  
A. Rosenkranz ◽  
B. Leschnik ◽  
W. Raith ◽  
W. Muntean ◽  
...  

SummaryThrombin generation was studied in paediatric patients with congenital heart disease (CHD) undergoing cardiac surgery using the calibrated automated thrombography (CAT) in terms of the lag time until the onset of thrombin formation, time to thrombin peak maximum (TTP), endogenous thrombin potential (ETP), and thrombin peak height. The suitability to determine the coagulation status of these patients was investigated. Patients, material, methods: CAT data of 40 patients with CHD (age range from newborn to 18 years) were compared to data using standard coagulation parameters such as prothrombin (FII), antithrombin (AT), tissue factor pathway inhibitor (TFPI), prothrombin fragment 1.2 (F 1.2), thrombin-antithrombin (TAT), activated partial thromboplastin time (aPTT), and prothrombin time (PT). Results: A significant positive correlation was seen between ETP and FII (p < 0.01; r = 0.369), as well as between peak height and F II (p < 0.01; r = 0.483). A significant negative correlation was seen between ETP and TFPI values (p < 0.05; r = –0.225) while no significant correlation was seen between peak height and TFPI. A significant negative correlation was seen between F 1.2 generation and ETP (p < 0.05; r = –0.254) and between F 1.2 generation and peak height (p < 0.05; r = –0.236). No correlation was seen between AT and ETP or peak. Conclusions: CAT is a good global test reflecting procoagulatory and inhibitory factors of the haemostatic system in paediatric patients with CHD.


Sign in / Sign up

Export Citation Format

Share Document