A low-cost Kinect™ for Windows® v2-based gait analysis system

Author(s):  
Jorge Latorre ◽  
Roberto Llorens ◽  
Adrian Borrego ◽  
Mariano Alcaniz ◽  
Carolina Colomer ◽  
...  
2015 ◽  
Vol 100 ◽  
pp. 55-62 ◽  
Author(s):  
Akihiro Nakamura ◽  
Hiroyuki Funaya ◽  
Naohiro Uezono ◽  
Kinichi Nakashima ◽  
Yasumasa Ishida ◽  
...  

2021 ◽  
Vol 27 (4) ◽  
pp. 271-277
Author(s):  
Szymon Cygan ◽  
Adriana Specyalska

Abstract Purpose: The aim of this study was to quantify the accuracy of 3D trajectory reconstructions performed from two planar video recordings, using three different reconstruction methods. Additionally, the recordings were carried out using easily available equipment, like built-in cellphone cameras, making the methods suitable for low-cost applications. Methods: A setup for 3D motion tracking was constructed and used to acquire 2D video recordings subsequently used to reconstruct the 3D trajectories by 1) merging appropriate coordinates, 2) merging coordinates with proportional scaling, and 3) calculating the 3D position based on markers’ projections on the viewing plane. As experimental verification, two markers moving at a fixed distance of 98.9 cm were used to assess the consistency of results. Next, gait analysis in five volunteers was carried out to quantify the differences resulting from different reconstruction methods. Results: Quantitative evaluation of the investigated 3D trajectories reconstruction methods showed significant differences between those methods, with the worst reconstruction approach resulting in a maximum error of 50% (standard deviation 13%), while the best resulting in a maximum error of 1% (standard deviation 0.44%). The gait analysis results showed differences in mean angles obtained with each reconstruction method reaching only 2°, which can be attributed to the limited measurement volume. Conclusions: Reconstructing 3D trajectory from 2D views without accounting for the “perspective error” results in significant reconstruction errors. The third method described in this study enables a significant reduction of this issue. Combined with the proposed setup, it provides a functional, low-cost gait analysis system.


Author(s):  
Dazhong Xu ◽  
Zengtao Hou ◽  
Zhaolan Yang ◽  
Qinli Zhang ◽  
Rong Xu ◽  
...  

2018 ◽  
Vol 34 (6) ◽  
pp. 503-508 ◽  
Author(s):  
Mary Emily Littrell ◽  
Young-Hui Chang ◽  
Brian P. Selgrade

Clinically, measuring gait kinematics and ground reaction force (GRF) is useful to determine the effectiveness of treatment. However, it is inconvenient and expensive to maintain a laboratory-grade gait analysis system in most clinics. The purpose of this study was to validate a Wii Balance Board, Kinovea motion-tracking software, and a video camera as a portable, low-cost system, and overground gait analysis system. We validated this low-cost system against a multicamera Vicon system and research-grade force platform (Advanced Mechanical Technology, Inc). After validation trials with known weights and angles, 5 subjects walked across an instrumented walkway for multiple times (n = 8/subject). We collected vertical GRF and segment angles. Average GRF data from the 2 systems were similar, with peak GRF errors below 3.5%BW. However, variability in the balance board’s sampling rate led to large GRF errors early and late in stance, when the GRF changed rapidly. The thigh, shank, and foot angle measurements were similar between the single and multicamera, but the pelvis angle was far less accurate. The proposed system has the potential to provide accurate segment angles and peak GRF at low cost but does not match the accuracy of the multicamera system and force platform, in part because of the Wii Balance Board’s variable sampling rate.


Sign in / Sign up

Export Citation Format

Share Document