A Low Cost, Real-time Gait Analysis System

Author(s):  
B. Rogers ◽  
F. Dunn ◽  
G. Walden ◽  
E. Eidelberg
2014 ◽  
Vol 08 (02) ◽  
pp. 209-227 ◽  
Author(s):  
Håkon Kvale Stensland ◽  
Vamsidhar Reddy Gaddam ◽  
Marius Tennøe ◽  
Espen Helgedagsrud ◽  
Mikkel Næss ◽  
...  

There are many scenarios where high resolution, wide field of view video is useful. Such panorama video may be generated using camera arrays where the feeds from multiple cameras pointing at different parts of the captured area are stitched together. However, processing the different steps of a panorama video pipeline in real-time is challenging due to the high data rates and the stringent timeliness requirements. In our research, we use panorama video in a sport analysis system called Bagadus. This system is deployed at Alfheim stadium in Tromsø, and due to live usage, the video events must be generated in real-time. In this paper, we describe our real-time panorama system built using a low-cost CCD HD video camera array. We describe how we have implemented different components and evaluated alternatives. The performance results from experiments ran on commodity hardware with and without co-processors like graphics processing units (GPUs) show that the entire pipeline is able to run in real-time.


Author(s):  
Hiroshi Osaka ◽  
Koichi Shinkoda ◽  
Susumu Watanabe ◽  
Daisuke Fujita ◽  
Kenichi Kobara ◽  
...  

Author(s):  
Jorge Latorre ◽  
Roberto Llorens ◽  
Adrian Borrego ◽  
Mariano Alcaniz ◽  
Carolina Colomer ◽  
...  

2015 ◽  
Vol 100 ◽  
pp. 55-62 ◽  
Author(s):  
Akihiro Nakamura ◽  
Hiroyuki Funaya ◽  
Naohiro Uezono ◽  
Kinichi Nakashima ◽  
Yasumasa Ishida ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Aditya Viswakumar ◽  
Venkateswaran Rajagopalan ◽  
Tathagata Ray ◽  
Pranitha Gottipati ◽  
Chandu Parimi

Gait analysis is used in many fields such as Medical Diagnostics, Osteopathic medicine, Comparative and Sports-related biomechanics, etc. The most commonly used system for capturing gait is the advanced video camera-based passive marker system such as VICON. However, such systems are expensive, and reflective markers on subjects can be intrusive and time-consuming. Moreover, the setup of markers for certain rehabilitation patients, such as people with stroke or spinal cord injuries, could be difficult. Recently, some markerless systems were introduced to overcome the challenges of marker-based systems. However, current markerless systems have low accuracy and pose other challenges in gait analysis with people in long clothing, hiding the gait kinematics. The present work attempts to make an affordable, easy-to-use, accurate gait analysis system while addressing all the mentioned issues. The system in this study uses images from a video taken with a smartphone camera (800 × 600 pixels at an average rate of 30 frames per second). The system uses OpenPose, a 2D real-time multi-person keypoint detection technique. The system learns to associate body parts with individuals in the image using Convolutional Neural Networks (CNNs). This bottom-up system achieves high accuracy and real-time performance, regardless of the number of people in the image. The proposed system is called the “OpenPose based Markerless Gait Analysis System” (OMGait). Ankle, knee, and hip flexion/extension angle values were measured using OMGait in 16 healthy volunteers under different lighting and clothing conditions. The measured kinematic values were compared with a standard video camera based normative dataset and data from a markerless MS Kinect system. The mean absolute error value of the joint angles from the proposed system was less than 90 for different lighting conditions and less than 110 for different clothing conditions compared to the normative dataset. The proposed system is adequate in measuring the kinematic values of the ankle, knee, and hip. It also performs better than the markerless systems like MS Kinect that fail to measure the kinematics of ankle, knee, and hip joints under dark and bright light conditions and in subjects with long robe clothing.


Sign in / Sign up

Export Citation Format

Share Document