Trajectory Planning of Biped Robot Using Linear Pendulum Mode for Double Support Phase

Author(s):  
Maki Shibuya ◽  
Tomoyuki Suzuki ◽  
Kouhei Ohnishi
Author(s):  
Farsam Farzadpour ◽  
Mohammad Danesh ◽  
Seyed M TorkLarki

Gait generation plays a significant role in the quality of locomotion of legged robots. This paper presents the development of multi-phase dynamic equations and optimal trajectory generation for a seven-link planar-biped robot walking on the ground level with consideration of feet rotation in the double support phase. The main contribution of this paper is to increase the stability margin at the phase transition time for simultaneous feet rotation in double support phase by introducing a new style of feet rotation. First, the derivation of the dynamics equations, which is a challenging problem due to the existence of the holonomic constraints, is performed using the Lagrangian formulation. Then, an analytical solution to inverse kinematics is proposed to determine the angles of each joint. A multi-objective genetic algorithm-based optimization technique is proposed to obtain the key parameters in trajectory generation so that the zero moment point tracks a predefined stable trajectory and additionally minimizes the power consumption, which is subjected to actuators’ powers limitations. The effect of the hip height on the total power consumption is also investigated. The numerical simulations demonstrate the effectiveness of the proposed method.


2012 ◽  
Vol 463-464 ◽  
pp. 1252-1255 ◽  
Author(s):  
Farsam Farzadpour ◽  
Mohammad Danesh

This paper presents a trajectory generation approach for a 7-DOF biped robot on level ground. Simultaneously rotation of feet in double support phase is considered which leads to high-speed and more similar to human being walking. The zero moment point (ZMP) stability criterion is used to ensure the stability of the bipedal walking robot. Since ZMP trajectory in human walking does not stay fixed, it needs to be a straight line shaped forward ZMP trajectory to have a natural walk. A genetic algorithm based method is proposed to obtain key parameters in trajectory generation such that the ZMP follows a predefined trajectory while minimizing power consumption. Simulation results demonstrate the effectiveness of the proposed method.


Author(s):  
D. Tlalolini ◽  
C. Chevallereau ◽  
Y. Aoustin

Fast human walking includes a phase where the stance heel rises from the ground and the stance foot rotates about the stance toe. This phase where the biped becomes under-actuated is not present during the walk of humanoid robots. The objective of this study is to determine if the introduction of this phase for a biped robot is useful to reduce the energy consumed in the walking. For simplicity only a planar biped is considered. In order to study the efficiency of this phase, four cyclic gaits are presented. For these gaits optimal motions with respect to the torque cost are defined for given performances of actuators. It is shown that for fast motions a foot rotation sub-phase is useful to reduce the criteria cost. In the optimization process, under-actuated phase (foot rotation phase), fully-actuated phase (flat foot phase) and over-actuated phase (double support phase) are considered.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1082
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Linear inverted pendulum model (LIPM) is an effective and widely used simplified model for biped robots. However, LIPM includes only the single support phase (SSP) and ignores the double support phase (DSP). In this situation, the acceleration of the center of mass (CoM) is discontinuous at the moment of leg exchange, leading to a negative impact on walking stability. If the DSP is added to the walking cycle, the acceleration of the CoM will be smoother and the walking stability of the biped will be improved. In this paper, a linear pendulum model (LPM) for the DSP is proposed, which is similar to LIPM for the SSP. LPM has similar characteristics to LIPM. The dynamic equation of LPM is also linear, and its analytical solution can be obtained. This study also proposes different trajectory-planning methods for different situations, such as periodic walking, adjusting walking speed, disturbed state recovery, and walking terrain-blind. These methods have less computation and can plan trajectory in real time. Simulation results verify the effectiveness of proposed methods and that the biped robot can walk stably and flexibly when combining LIPM and LPM.


Sign in / Sign up

Export Citation Format

Share Document