Real-time capable methods to determine the magnet temperature of permanent magnet synchronous motors — A review

Author(s):  
Oliver Wallscheid ◽  
Tobias Huber ◽  
Wilhelm Peters ◽  
Joachim Bocker
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wenbao Hou ◽  
Guojun Tan ◽  
Zang Ling

An efficient estimation of the rotor position has always been a premise of the reliable operation for the interior permanent magnet synchronous motors (IPMSM), especially for low-speed conditions because of the small back electromotive force (EMF) and low signal-to-noise ratio (SNR). The commonly used observation method, e.g., sliding mode observer (SMO), is suitable for these surface mounted motors and has no great adaptability to the saliency. In this paper, a novel rotor position (including the real-time position and initial position) estimation method was proposed based on the traditional high-frequency signal injection method. Firstly, high-frequency signals were injected to induce the high-frequency current components which contain the rotor position information. Then, the sliding discrete Fourier transform (SDFT) algorithm was used to extract the amplitudes of the induced current components which could be used to get the real-time and initial rotor positions by a proportional integral (PI) regulator and a polarity identification. Lastly, with the established experiments’ platform, the estimation tests of the rotor position at a low speed have been completed to make verification of the effectiveness of the approach studied in this paper.


Author(s):  
Chun Li ◽  
Fu-Chang Huang ◽  
Yong-Qing Wang

This article presents an applicable real-time thermal model for the temperature prediction of permanent magnet synchronous motors. The load capacities of most permanent magnet synchronous motors are usually limited by the temperature, and overheating is one of the main reasons for permanent magnet synchronous motors breakdown, so an applicable temperature prediction approach is helpful to improve motor utilization and protect permanent magnet synchronous motors from thermal distortion. Compared with embedding temperature sensors into motor structures, implementing real-time thermal model in motor controllers is a cost-effective and rapid response protection method, but it still faces the challenges on the temperature estimation accuracy, the complexity of the model parameters and the computational efforts. To balance every aspect of these challenges, this article tries a simple real-time thermal model to accurately predict the thermal behavior by elaborately modeling stator core losses and considering motor itself cooling ability. The affections of the motor current and speed on the core losses are analyzed and a polynomial equation is adopted to deal with their dependencies. To simulate the motor speed impact on the cooling ability, motor speed is involved in the variable thermal conductance of the motor housing inside the surroundings by another polynomial equation. This article describes how to get the most parameters of the proposed real-time thermal model through motor basic dimensional information and introduces the test methods employed to determine the parameters of the above two polynomial equations. In the experiments, first the thermal model building process is provided by an actual permanent magnet synchronous motor with two simple tests, and then the online analytical expressions with the obtained parameters are implemented in the drive controller to verify the performance of the proposed real-time thermal model. The results of the performance tests show that the real-time thermal model has a good agreement between estimated and measured temperature values, and its performance can satisfy the most actual applications.


Sign in / Sign up

Export Citation Format

Share Document