Research on multi-objective control strategy of split-capacitor-type three-phase four-wire distribution static generator

Author(s):  
Yao Gang ◽  
Zhou Xiaojun ◽  
Li Dongdong ◽  
Zhou Lidan ◽  
Yu Huajun
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1146
Author(s):  
Muhammad Shahab ◽  
Shaorong Wang ◽  
Abdul Khalique Junejo

The usage of electric vehicles (EV) have been spreading worldwide, not only as an alternative to achieve a low-carbon future but also to provide ancillary services to improve the power system reliability. A common problem encountered in the existing alternating current (AC) grids is low power factor, which cause several power quality problems and has worsened with the growing application of distributed generation (DG). Therefore, considering the spread of EVs usage for ancillary services and the low power factor issue in current electrical grids, this paper proposes an improved control strategy for power factor correction of a three-phase microgrid management composed of a photovoltaic (PV) array, dynamic loads, and an EV parking lot. This control strategy aims to support power factor issues using the EV charging stations, allowing the full PV generation. Different operation modes are proposed to fulfill the microgrid and the EV users’ requirements, characterizing a Multi Objective Optimization (MOO) approach. In order to achieve these optimization requests, a dynamic programming method is used to charge the vehicle while adjusting the microgrid power factor. The proposed control algorithm is verified in different scenarios, and its results indicate a suitable performance for the microgrid even during conditions of overload and high peak power surplus in generation unit. The microgrid power factor remains above the desired reference during the entire analyzed period, in which the error is approximately 4.5 less than the system without vehicles, as well as obtains an energy price reduction.


2020 ◽  
Vol 93 (1-4) ◽  
pp. 39-44
Author(s):  
Sławomir Grzyb ◽  
Przemysław Orłowski

Effective congestion control is an issue strongly impacting basic features demanded from modern network environment as reliability, high and stable throughput, and low delays. These characteristics define the quality of communication channels. Optimizing network nodes configuration for only one of mentioned features, can exacerbate other parameters. This paper focuses on avoiding and alleviating network congestions using multi-objective optimization for gain setting of used controllers. Unlike in other presented approaches, in this case the non-stationary, discrete, dynamical model is discussed. The significant advantage of this approach is in the better reflection of the real environment conditions, where the transmission delay is floating. As the further development of the control strategy, the controller with the memory of previous steps have been deployed. Such control strategy mitigates the unfavorable impact of extended delays. Both proposed control strategies tune the presented model of communication channel to alleviate the results of sudden, unexpected network state changes. It is obtained by maximization of available bandwidth usage combined with minimization of buffer utilization. This supports avoiding undesirable congestion effects like packet dropping, retransmissions, high delay, and low network throughput.


Energy ◽  
2010 ◽  
Vol 35 (12) ◽  
pp. 5022-5030 ◽  
Author(s):  
Edris Pouresmaeil ◽  
Daniel Montesinos-Miracle ◽  
Oriol Gomis-Bellmunt ◽  
Joan Bergas-Jané

Sign in / Sign up

Export Citation Format

Share Document