Robust control of weight on bit in unified experimental system combining process model and laboratory drilling rig

Author(s):  
Sike Ma ◽  
Min Wu ◽  
Luefeng Chen ◽  
Chengda Lu
Author(s):  
Magnus Nystad ◽  
Bernt Aadnoy ◽  
Alexey Pavlov

Abstract The Rate of Penetration (ROP) is one of the key parameters related to the efficiency of the drilling process. Within the confines of operational limits, the drilling parameters affecting the ROP should be optimized to drill more efficiently and safely, to reduce the overall cost of constructing the well. In this study, a data-driven optimization method called Extremum Seeking (ES) is employed to automatically find and maintain the optimal Weight on Bit (WOB) which maximizes the ROP. The ES algorithm is a model-free method which gathers information about the current downhole conditions by automatically performing small tests with the WOB and executing optimization actions based on the test results. In this paper, this optimization method is augmented with a combination of a predictive and a reactive constraint handling technique to adhere to operational limitations. These methods of constraint handling within ES application to drilling are demonstrated for a maximal limit imposed on the surface torque, but the methods are generic and can be applied on various drilling parameters. The proposed optimization scheme has been tested with experiments on a downscaled drilling rig and simulations on a high-fidelity drilling simulator of a full-scale drilling operation. The experiments and simulations show the method's ability to steer the system to the optimum and to handle constraints and noisy data, resulting in safe and efficient drilling at high ROP.


Author(s):  
Daiyan Ahmed ◽  
Yingjian Xiao ◽  
Jeronimo de Moura ◽  
Stephen D. Butt

Abstract Optimum production from vein-type deposits requires the Narrow Vein Mining (NVM) process where excavation is accomplished by drilling larger diameter holes. To drill into the veins to successfully extract the ore deposits, a conventional rotary drilling rig is mounted on the ground. These operations are generally conducted by drilling a pilot hole in a narrow vein followed by a hole widening operation. Initially, a pilot hole is drilled for exploration purposes, to guide the larger diameter hole and to control the trajectory, and the next step in the excavation is progressed by hole widening operation. Drilling cutting properties, such as particle size distribution, volume, and shape may expose a significant drilling problem or may provide justification for performance enhancement decisions. In this study, a laboratory hole widening drilling process performance was evaluated by drilling cutting analysis. Drill-off Tests (DOT) were conducted in the Drilling Technology Laboratory (DTL) by dint of a Small Drilling Simulator (SDS) to generate the drilling parameters and to collect the cuttings. Different drilling operations were assessed based on Rate of Penetration (ROP), Weight on Bit (WOB), Rotation per Minute (RPM), Mechanical Specific Energy (MSE) and Drilling Efficiency (DE). A conducive schedule for achieving the objectives was developed, in addition to cuttings for further interpretation. A comprehensive study for the hole widening operation was conducted by involving intensive drilling cutting analysis, drilling parameters, and drilling performance leading to recommendations for full-scale drilling operations.


Author(s):  
Abdelsalam N. Abugharara ◽  
John Molgaard ◽  
Charles A. Hurich ◽  
Stephen D. Butt

Abstract Coring natural rocks (granite) and synthetic rocks (rock like material, RLM) using diamond impregnated coring bit was performed by A rigid coring system. RLM and granite were previously tested to be isotropic rocks by the author [1, 2, 3, 4] A baseline procedure was developed for isotropic rock characterization [2] and this work is to contribute to the developed baseline procedure by considering downhole dynamic weight on bit (DDWOB). The drilling parameters involved in the analysis included rate of penetration (ROP) depth of cut (DOC), rpm, and torque. All parameters were studied as a function of DDWOB at 300 and 600 input rpm. A fully instrumented laboratory scale rotary drilling rig was used with 5 liter/minute water flow rate. Samples were first cored in 47.6 mm diameter in the desired orientations. Samples of granite were cored in two perpendicular directions (vertical and horizontal) and samples of RLM were cored in three directions including vertical, oblique, and horizontal. The coring experiments were performed using 25.4 mm diamond impregnated coring bit. At each input rpm and at each applied static weight, multiple coring runs were repeated and then averaged; therefore, each point of the displayed data was averaged of at least three repeated experiments at the same inputs. DDWOB was recorded by a load cell fixed beneath the sample holder and connected to a Data Acquisition System that records at 1000 HZ sampling rate. Several sensors were used to record the required data, including operational rotary speed, advancement of drill bit for ROP calculation, and motor current for torque measurement. Results showed similar trends in different orientations at the same inputs demonstrating RLM and granite isotropy. The results also showed the influence of DDWOB on ROP, DOC, rpm, and torque (TRQ) expanding the baseline procedure through considering DDWOB for isotropic rock characterization.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 702-719
Author(s):  
Amir Nobahar Sadeghi ◽  
Kutluk Bilge Arıkan ◽  
Mehmet Efe Özbek ◽  
Besim Baranoğlu

Oil well drilling towers have different operating modes during a real operation, like drilling, tripping, and reaming. Each mode involves certain external disturbances and uncertainties. In this study, using the nonlinear model for the modes of the operation, robust and/or adaptive control systems are designed based on the models. These control strategies include five types of controllers: cascaded proportional–integral–derivative, active disturbance rejection controller, loop shaping, feedback error learning, and sliding mode controller. The study presents the design process of these controllers and evaluates the performances of the proposed control systems to track the reference signal and reject the uncertain forces including the parametric uncertainties and the external disturbances. This comparison is based on the mathematical performance measures and energy consumption. In addition, three architectures are presented to control the weight on bit during drilling process, and also to maintain a preset constant weight on bit, two control approaches are designed and presented.


Author(s):  
Abdelsalam N. Abugharara ◽  
Charles A. Hurich ◽  
John Molgaard ◽  
Stephen D. Butt

The influence of shale anisotropy orientation on shale drilling performance has been studied using a new laboratory procedure. This procedure includes drilling and testing three sets of shale samples in different orientations from a single rock sample. Shale samples of different types were collected from outcrops located at Conception Bay South (CBS) in Newfoundland, Canada. For predrilling tests, oriented physical and mechanical measurements on each type of shale were conducted on the same rocks that will be drilled later. For drilling tests, three sets of tests were conducted. Each set was in a different orientation, corresponding to those in the physical and mechanical measurements. Each set was conducted under the same drilling parameters of pressure, flow rate (FR), and weight on bit (WOB) using a fully instrumented laboratory scale drilling rig. Two different types of drill bits were used, including a 35 mm dual cutter PDC bit and a 25.4 mm diamond coring bit. The drilling data was analyzed by constructing relationships between drilling rate of penetration (ROP) versus orientation (i.e. 0°, 45°, or 90°). The analysis also included relationships between WOB and bit cutter Depth of Cut (DOC), Revolution Per Minute (RPM), and Torque (TRQ). All the above relations were evaluated as a function of shale bedding orientation. This evaluation can assist in understanding the influence of shale anisotropy on oriented drilling. Details of the conducted tests and results are reported.


Author(s):  
Sushant N Pawar ◽  
Rajan H Chile ◽  
Balasaheb M Patre

This paper describes a predictive extended state observer-based robust control for uncertain process control applications. The technique discussed in the article uses the extended state observer (ESO) that can estimate the dynamics of the system as well as total disturbance encountered in the system. The disturbances, parametric uncertainties associated with the processes are treated as an extended state variable to be estimated in real-time using ESO. With the implementation of a predictive algorithm with an ESO, the proposed control structure extends its applicability to time-delayed higher-order processes. The proposed control technique utilizes the simple first-order modified predictive ESO even in the case of higher-order processes. The novel predictive ESO is able to obtain a delay less estimation of total disturbance as compared with existing normal ESO. Also, novel predictive ESO maintains its stability margin in presence of time delay as well provides better response as compared with normal ESO. Numerical simulations show that the proposed scheme provides a significant improvement in transient response as compared with internal model control-based proportional-integral-derivative (IMC-PID) control. The proposed scheme requires less knowledge of the process as compared with the IMC-PID structure. The implementation of the proposed control is tested on a real-life single tank level control system. Because of its merit, the suggested technique can be used as automatic for online tuning, as it is less reliant on the process model.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
A. N. Abugharara ◽  
Bashir Mohamed ◽  
C. Hurich ◽  
J. Molgaard ◽  
S. D. Butt

The influence of shale anisotropy and orientation on shale drilling performance was studied with an instrumented laboratory drilling rig with a 38.1-mm dual-cutter polycrystalline diamond compact (PDC) bit, operating at a nominally fixed rotational speed with a constant rate of flow of drilling fluid—water. However, the rate of rotation (rpm) was affected by the weight on bit (WOB), as was the torque (TRQ) produced. The WOB also affected the depth of cut (DOC). All these variables, WOB, rpm, TRQ, and DOC, were monitored dynamically, for example, rpm with a resolution of one-third of a revolution (samples at time intervals of 0.07 s.) The shale studied was from Newfoundland and was compared with similar tests on granite, also from a local site. Similar tests were also conducted on the concrete made with fine aggregate, used as “rock-like material” (RLM). The shale samples were embedded (laterally confined) in the concrete while drilled in directions perpendicular, parallel, and at 45 deg orientations to bedding planes. Cores were produced from all three materials in several directions for the determination of oriented physical properties derived from ultrasonic testing and oriented unconfined compressive strength (OUCS). In the case of shale, directions were set relative to the bedding. In this study, both primary (or compression) velocity Vp and shear ultrasonic velocity Vs were found to vary with orientation on the local shale samples cored parallel to bedding planes, while Vp and Vs varied, but only slightly, with orientation in tests on granite and RLM. The OUCS data for shale, published elsewhere, support the OUCS theory of this work. The OUCS is high perpendicular and parallel to shale bedding, and is low oblique to shale bedding. Correlations were found between the test parameters determined from the drilling tests on local shale. As expected, ROP, DOC, and TRQ increase with increasing WOB, while there are inverse relationships between ROP, DOC, and TRQ with rpm on the other hand. All these parameters vary with orientation to the bedding plane.


1982 ◽  
Vol 104 (2) ◽  
pp. 108-120 ◽  
Author(s):  
I. E. Eronini ◽  
W. H. Somerton ◽  
D. M. Auslander

A rock drilling model is developed as a set of ordinary differential equations describing discrete segments of the drilling rig, including the bit and the rock. The end segment consists of a description of the bit as a “nonideal” transformer and a characterization of the rock behavior. The effects on rock drilling of bottom hole cleaning, drill string-borehole interaction, and tooth wear are represented in the model. Simulated drilling under various conditions, using this model, gave results which are similar to those found in field and laboratory drilling performance data. In particular, the model predicts the expected relationships between drilling rate and the quantities, weight on bit, differential mud pressure, and rotary speed. The results also suggest that the damping of the longitudinal vibrations of the drill string could be predominantly hydrodynamic as opposed to viscous. Pulsations in the mud flow are found to introduce “percussive” effects in the bit forces which seem to improve the penetration rate. However, it is known from field observations that drill pipe movements, if strong enough, may induce mud pressure surges which can cause borehole and circulation problems. Bit forces and torques are shown to be substantially coupled and the influence of certain rock parameters on variables which are measurable either at the bit or on the surface support the expectation that these signals can furnish useful data on the formation being drilled. Other results, though preliminary, show that the effects of the lateral deflections of the drill string may be large for the axial bit forces and significant for the torsional vibrations. For the latter, the unsteady nature of the rotation above the bit increases and the resistance to rotation due to rubbing contact between the drill string and the wellbore accounts for very large power losses between the surface and the bit.


Sign in / Sign up

Export Citation Format

Share Document