Demulsification mechanism of simulated liquid production in the polymer-surfactant flooding process

Author(s):  
Mingxin Wang ◽  
Jin Huang ◽  
Xin Zhang ◽  
Jinling Li ◽  
Chunling Xu ◽  
...  
2021 ◽  
Vol 6 (1) ◽  
pp. 40-46
Author(s):  
A. G. Skripkin ◽  
I. N. Koltsov ◽  
S. V. Milchakov

The paper presents the results of laboratory studies of polymer-surfactant flooding on core samples of different permeability. The obtained data are used in hydrodynamic modeling. Experimental studies included: • study of the dynamics of oil displacement, plotting the dependence of the residual oil saturation on the surfactant concentration – interfacial tension at the interface of the surfactant-oil solution; • comparative experimental studies of residual oil saturation when oil is displaced by surfactant compositions of various manufacturers; • comparative studies of phase permeability in flood experiments for the filtration of oil and water, oil and polymer-surfactant solution at different ratios in the flow.


2013 ◽  
Vol 807-809 ◽  
pp. 2647-2651
Author(s):  
Jian Zhang

A novel kind of activated polymer flooding (APF) composing activated agent and polymer components designed for the target reservoir is studied for the first time. Interactions between the activated agent and natural surfactant from heavy oil, and the synergistic effect between the activated agent and polymer are existed. APF could enhance more oil recovery with less investment, compare to polymer-surfactant flooding (PSF) in the offshore heavy oilfield. The optimum formulation of APF is 1200mg/L polymer + 500mg/L activated agent. Experimental results implies that (1) the contained amide groups and sulfonic groups in APF can form hydrogen bonds with-NH2 groups contained in PM, (2) the apparent viscosity of APF was higher than PM along with the increase of shear rate, (3) the viscoelasticity, deformation capability and solubility of APF were much better than PM.


Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122867
Author(s):  
Omid Tavakkoli ◽  
Hesam Kamyab ◽  
Mahdi Shariati ◽  
Abdeliazim Mustafa Mohamed ◽  
Radzuan Junin

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1086 ◽  
Author(s):  
Haiyan Zhou ◽  
Afshin Davarpanah

Simultaneous utilization of surfactant and preformed particle gel (henceforth; PPG) flooding on the oil recovery enhancement has been widely investigated as a preferable enhanced oil recovery technique after the polymer flooding. In this paper, a numerical model is developed to simulate the profound impact of hybrid chemical enhanced oil recovery methods (PPG/polymer/surfactant) in sandstone reservoirs. Moreover, the gel particle conformance control is considered in the developed model after polymer flooding performances on the oil recovery enhancement. To validate the developed model, two sets of experimental field data from Daqing oil field (PPG conformance control after polymer flooding) and Shengli oil field (PPG-surfactant flooding after polymer flooding) are used to check the reliability of the model. Combination of preformed gel particles, polymers and surfactants due to the deformation, swelling, and physicochemical properties of gel particles can mobilize the trapped oil through the porous media to enhance oil recovery factor by blocking the high permeable channels. As a result, PPG conformance control plays an essential role in oil recovery enhancement. Furthermore, experimental data of PPG/polymer/surfactant flooding in the Shengli field and its comparison with the proposed model indicated that the model and experimental field data are in a good agreement. Consequently, the coupled model of surfactant and PPG flooding after polymer flooding performances has led to more recovery factor rather than the basic chemical recovery techniques.


Sign in / Sign up

Export Citation Format

Share Document