Relationship Of Time-domain And Frequency-domain Generalized Orthogonal Functional Expansions To Wiener Kernels

Author(s):  
J.D. Victor
2012 ◽  
Vol 429 ◽  
pp. 195-199
Author(s):  
Xiao Lei Zhao ◽  
Ming Rong Ren ◽  
Ya Ting Zhang ◽  
Pu Wang

The research and detection of heart disease depends on the analysis of the characteristic of electrocardio signal. Current analysis methods mainly include: (1) time domain analysis is a common used approach. With experience learned by observation and calculation, researchers examine errors and interferences to calculate means and variances directly within time domain. Analysis quality of this method demands higher request for researchers’ experience and skill although it’s a direct and significant result. (2) Frequency domain analysis, such as spectrum estimation, is largely applied to electrocardio signal researches and clinical applications. The analysis reflects abundant electrocardio activities, but failed to show details of the characteristics due to lack of time information. (3) time-frequency domain analysis describes energy density under different time and frequency of electrocardio signal at one time. It clarifies the relationship of signal frequency’s changing along with time such as wavelet transform method. (4) Nonlinear analysis is generally applied to biomedicine signal research in recent years. Correlation dimension, kolmogorov entropy, lyapunov component are major research methods to estimate some nonlinear dynamic parameters to represent the characteristic of electrocardio signal.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


Sign in / Sign up

Export Citation Format

Share Document